148 research outputs found

    Recent highlights and prospects on (n,γ\gamma) measurements at the CERN n_TOF facility

    Full text link
    Neutron capture cross-section measurements are fundamental in the study of the slow neutron capture (s-) process of nucleosynthesis and for the development of innovative nuclear technologies. One of the best suited methods to measure radiative neutron capture (n,γ\gamma) cross sections over the full stellar range of interest for all the applications is the time-of-flight (TOF) technique. Overcoming the current experimental limitations for TOF measurements, in particular on low mass unstable samples, requires the combination of facilities with high instantaneous flux, such as the CERN n_TOF facility, with detection systems with an enhanced detection sensitivity and high counting rate capabilities. This contribution presents a summary about the recent highlights in the field of (n,γ\gamma) measurements at n_TOF. The recent upgrades in the facility and in new detector concepts for (n,\g) measurements are described. Last, an overview is given on the existing limitations and prospects for TOF measurements involving unstable targets and the outlook for activation measurements at the brand new high-flux n_TOF-NEAR station.Comment: 7 pages, 5 figures (8 panels). Proceedings of the CGS-17 conference. To be published in EPJ Web of Conference

    Cold exposure modulates potential brown adipokines in humans, but only FGF21 is associated with brown adipose tissue volume

    Get PDF
    Objective: The study objective was to investigate the effect of cold exposure on the plasma levels of five potential human brown adipokines (chemokine ligand 14 [CXCL14], growth differentiation factor 15 [GDF15], fibroblast growth factor 21 [FGF21], interleukin 6 [IL6], and bone morphogenic protein 8b [BMP8b]) and to study whether such cold-induced effects are related to brown adipose tissue (BAT) volume, activity, or radiodensity in young humans.Methods: Plasma levels of brown adipokines were measured before and 1 h and 2 h after starting an individualized cold exposure in 30 young adults (60% women, 21.9 +/- 2.3 y; 24.9 +/- 5.1 kg/m(2)). BAT volume, F-18-fluorodeoxyglucose uptake, and radiodensity were assessed by a static positron emission tomography-computerized tomography scan after cold exposure.Results: Cold exposure increased the concentration of CXCL14 (Delta 2h = 0.58 +/- 0.98 ng/mL; p = 0.007), GDF15 (Delta 2h = 19.63 +/- 46.2 pg/mL; p = 0.013), FGF21 (Delta 2h = 33.72 +/- 55.13 pg/mL; p = 0.003), and IL6 (Delta 1h = 1.98 +/- 3.56 pg/mL; p = 0.048) and reduced BMP8b (Delta 2h = -37.12 +/- 83.53 pg/mL; p = 0.022). The cold-induced increase in plasma FGF21 was positively associated with BAT volume (Delta 2h: beta = 0.456; R-2 = 0.307; p = 0.001), but not with F-18-fluorodeoxyglucose uptake or radiodensity. None of the changes in the other studied brown adipokines was related to BAT volume, activity, or radiodensity.Conclusions: Cold exposure modulates plasma levels of several potential brown adipokines in humans, whereas only cold-induced changes in FGF21 levels are associated with BAT volume. These findings suggest that human BAT might contribute to the circulatory pool of FGF21.Metabolic health: pathophysiological trajectories and therap

    Pushing the high count rate limits of scintillation detectors for challenging neutron-capture experiments

    Full text link
    One of the critical aspects for the accurate determination of neutron capture cross sections when combining time-of-flight and total energy detector techniques is the characterization and control of systematic uncertainties associated to the measuring devices. In this work we explore the most conspicuous effects associated to harsh count rate conditions: dead-time and pile-up effects. Both effects, when not properly treated, can lead to large systematic uncertainties and bias in the determination of neutron cross sections. In the majority of neutron capture measurements carried out at the CERN n\_TOF facility, the detectors of choice are the C6_{6}D6_{6} liquid-based either in form of large-volume cells or recently commissioned sTED detector array, consisting of much smaller-volume modules. To account for the aforementioned effects, we introduce a Monte Carlo model for these detectors mimicking harsh count rate conditions similar to those happening at the CERN n\_TOF 20~m fligth path vertical measuring station. The model parameters are extracted by comparison with the experimental data taken at the same facility during 2022 experimental campaign. We propose a novel methodology to consider both, dead-time and pile-up effects simultaneously for these fast detectors and check the applicability to experimental data from 197^{197}Au(nn,γ\gamma), including the saturated 4.9~eV resonance which is an important component of normalization for neutron cross section measurements

    Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF

    Get PDF
    This article presents a few selected developments and future ideas related to the measurement of (n,γ) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with γ-ray imaging capability for background suppression, and the development of an array of small-volume organic scintillators aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area

    Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF

    Get PDF
    This article presents a few selected developments and future ideas related to the measurement of (n,γ) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with γ-ray imaging capability for background suppression, and the development of an array of small-volume organic scintillators aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic
    corecore