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Abstract This article presents a few selected developments
and future ideas related to the measurement of (n, γ ) data
of astrophysical interest at CERN n_TOF. The MC-aided
analysis methodology for the use of low-efficiency radiation
detectors in time-of-flight neutron-capture measurements is
discussed, with particular emphasis on the systematic accu-
racy. Several recent instrumental advances are also presented,
such as the development of total-energy detectors with γ -
ray imaging capability for background suppression, and the
development of an array of small-volume organic scintilla-
tors aimed at exploiting the high instantaneous neutron-flux
of EAR2. Finally, astrophysics prospects related to the inter-
mediate i neutron-capture process of nucleosynthesis are dis-
cussed in the context of the new NEAR activation area.

1 Introduction

The fundamental role of neutron-induced reactions in the
formation of the heavy elements in the universe was already
evident in 1948 [1–4], although it was probably the first
observation of technetium in S-type stars [5] and the sub-
sequent quantitative theory of nucleosynthesis [6,7], which
triggered and guided an enormous experimental effort, that
still prevails today [8–14]. This article describes some exper-
imental developments primarily aimed at measuring nuclear
data of interest for nucleosynthesis studies in hydrostatic
stages of stellar evolution, namely asymptotic giant branch
(AGB-) and massive-stars [10,15]. These works were car-

ae-mail: domingo@ific.uv.es (corresponding author)
b https://www.cern.ch/ntof

ried out at the n_TOF facility, which has been extensively
described in detail elsewhere [16–18]. The first topic reported
in Sect. 2 is related to the accuracy of the measurements car-
ried out in neutron time-of-flight (TOF) experiments using
low-efficiency radiation detectors. This is an important sub-
ject for astrophysics because data from many previous mea-
surements still exhibit cross-section uncertainties that are sig-
nificantly larger than the few percent uncertainty attainable
from stellar observations or meteorites analysis [10]. The
experimental situation is illustrated in Fig. 1, which shows
Maxwellian average cross sections (MACS) at kT = 30 keV
and current uncertainties [19] for all nuclei involved in s-
process nucleosynthesis. As pointed out in several recent sen-
sitivity studies [20–24], the cross sections of many isotopes
need to be re-measured either with improved accuracy or over
more complete neutron-energy ranges in order to derive reli-
able information of astrophysical interest. This is particularly
true for the seeds of the s process around the Fe-Ni region
[21], whose cross sections at kT = 30 keV still show rel-
atively large uncertainties (see bottom panel in Fig. 1). For
this reason, many neutron-capture experiments were made
in the Fe/Ni region at n_TOF [13,25–28], JRC-Geel [29],
Los Alamos National Laboratory [30,31] and elsewhere [32].
Following this logic, many more experiments on stable iso-
topes will still follow in the coming years. The new mea-
surements will benefit, not only from the enhanced accuracy
approach described below in Sect. 2, but also from new instru-
mental developments such as those reported in Sects. 3 and 4.

Another topic which focuses many experimental efforts
nowadays is the determination of neutron-capture cross sec-
tions on unstable nuclei [10]. In AGB- and massive stars,
radioactive nuclei may split the nucleosynthesis path and
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Fig. 1 Maxwellian averaged neutron-capture cross section at kT = 30 keV (top panel) and their relative uncertainties (bottom panel). Blue colors
refer to nuclei with neutron-shell closures and branching nuclei are displayed in red. Most values are taken from [19] (see text for details)

yield a local isotopic pattern around the branching nucleus,
which is very sensitive to the physical conditions of the stel-
lar environment. Therefore, neutron-capture measurements
of these nuclei provide stringent constraints on stellar struc-
ture and evolution models. As shown in Fig. 1 several s-
process branching nuclei have been measured with high
accuracy [10,13], but there is still a significant number of
them that have not been accessed yet owing to limitations
in state-of-the-art detection systems and sample-production
capabilities. Sections 3 and 4 describe some recent techni-
cal developments aimed at enhancing detection sensitivity in
neutron-capture experiments, either by means of γ -imaging
or by means of very-low efficiency detectors. Section 5
then describes new ideas at n_TOF intended to afford direct
neutron-capture measurements of interest for more exotic
stellar environments, such as the intermediate i-process of
nucleosynthesis [33]. Finally, Section 6 summarizes the main
conclusions and future prospects.

2 Improved accuracy measurements via MC-aided
PHWT

One of the most relevant aspects when dealing with experi-
mental data concerns the systematic accuracy of the measure-
ment, the proper identification of experimental uncertainties
and their realistic assessment. Therefore, in the first n_TOF
experimental campaign in 2001 a study [34] was carried out

in order to address the systematic accuracy attainable with the
so-called Pulse-Height Weighting Technique (PHWT). Orig-
inally developed in the sixties at ORNL in a pioneer work by
Macklin et al. [35], the PHWT has been extremely helpful
and very extensively used at different laboratories worldwide
for the determination of neutron-capture data of astrophysi-
cal interest [8,10]. The Total-Energy Detection (TED) prin-
ciple in combination with the PHWT allowed one to virtu-
ally mimic an ideal Moxon-Rae detector [36]. However, the
new approach was much more flexible in terms of apparatus
and permitted to attain higher efficiency and better detection
sensitivity [8]. The latter was a key aspect to access neutron-
capture reactions of astrophysical relevance [35], including
also radioactive isotopes such as the s-process branchings
93Zr [37] and 99Tc [38].

An interesting aspect of the TED principle applied with
the PHWT is the fact that, essentially, only the requirement of
using low-efficiency γ -ray detectors needs to be experimen-
tally fulfilled [35]. This opens up a wide scope of options
in terms of instrumentation, an aspect that has been also
explored and exploited at n_TOF during the last years, as
described later in Sects. 3 and 4. Obviously, other additional
conditions are required for neutron-TOF experiments, such
as fast time-response and low intrinsic sensitivity to scattered
neutrons.

However, for several decades the systematic accuracy
attainable with the PHWT was a topic of controversy and
debate. As clearly stated by Corvi [39], one of the most
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puzzling aspects in the eighties was a 20% discrepancy
between capture- and transmission-measurements found for
the 1.15 keV resonance in 56Fe(n, γ ). At that time, this was
quoted as “one of the four major outstanding neutron data
problems in the field of fission reactor neutronics” [40]. The
1.15 keV resonance in 56Fe represents indeed an ideal case
for testing the accuracy of the technique because the capture
TOF experiment is mainly sensitive to the neutron width �n ,
which is accurately known from transmission measurements
[41].

In order to tackle this challenge and eventually develop
a general and reliable methodology for the analysis of cap-
ture data with the PHWT, at n_TOF we carried out a detailed
Monte-Carlo study [42] followed by a series of systematic
measurements [34]. The latter involved the use of two differ-
ent C6D6 detectors and iron samples of three different thick-
nesses (from 0.5 mm to 2 mm). The general conclusions
of this work were essentially two. First, it was understood
that the only reliable methodology to apply the PHWT accu-
rately was by means of detailed and realistic Monte Carlo
(MC) simulations of the experimental set-up for the deter-
mination of the weighting function (WF), which included
also a specific simulation for every particular sample used
in the capture experiments. Thus, at variance with the origi-
nal approach [35] and later works [39,43], there is not such
a thing like “The weighting function of the C6F6 scintilla-
tion detector” [43–45] or a unique “experimental WF” [39].
Instead, a WF needs to be calculated for each capture set-up
and for each specific sample measured in the TOF experiment
[34]. For relatively thick samples a resonance-dependent WF
may be needed in order to account for the different γ -ray
emission and absorption profiles across the sample thickness
[46]. This effect was relevant, for example, in the measure-
ment of 197Au(n, γ ) [47] or 232Th(n, γ ) [48]. Self-shielding
effects can also play an important role for some samples
or resonances and, therefore, the methodology developed in
Ref. [46] has been included in the R-matrix analysis code
REFIT [49]. For a recent review on the analysis techniques
for neutron induced reaction cross-section data the reader is
referred to Ref. [50].

The fact that the WF and the PHWT accuracy is so depen-
dent on so many experimental details reflects also the level
of sensitivity in these measurements, where small changes
in the experimental conditions can be quickly reflected in
the acquired capture data. The new MC-aided approach rep-
resented a change of paradigm in the analysis of neutron-
capture data using the PHWT, which has been adopted by the
scientific community [46,51]. It is worth to emphasize that
the work reported in [39] and references therein, although
did not provide a final solution to this problem, it had a cru-
cial relevance towards understanding its origin. It is worth
recalling also that MC simulations using the EGS-transport
code were applied in ORNL already in 1988 [52]. However,

the latter work still proposed a single WF for all capture
experiments regardless of the sample characteristics.

The second aspect found in [34] to be of relevance for
the accuracy of the PHWT was related to the signature of
nuclear-structure effects in the response functions measured
with the C6D6 detectors. In general, differences are found
between the capture-cascade spectrum of the sample under
study, and the one used as reference, commonly 197Au(n, γ ).
The methodology proposed in Ref. [34] to account for this
effect involves the MC simulation of the full capture cas-
cade for both studied- and reference-samples, and then deter-
mine a yield correction factor. Because of the interplay with
the nuclear-structure effects, the correction factor may even
change from one capture-resonance to another, depending
on the resonance spin and parity [53–55]. The main contri-
butions to the yield-correction factor arise from the differ-
ent number of counts missing under the detection threshold
(typically 150–200 keV), γ -ray summing effects, angular-
distribution effects [54,56], conversion-electrons and, if
present, isomeric-states [53]. References quoted represent
examples, where such correction factors were crucial to keep
the systematic uncertainty within the level of 2–3% RMS.
Finally, this result also highlights the relevance of suitable
computing codes and libraries [57], methods and models [58–
61] for simulating the cascade of prompt γ -rays in neutron-
capture experiments.

3 Background suppression via γ -ray imaging

As discussed in the preceding section, one of the most strik-
ing features of the TED principle is related to its versatility,
namely enabling the use of almost any detection system with
efficiency low enough to satisfy

εc = 1 −
N∏

j=1

(1 − ε
γ

j ) �
N∑

j=1

ε
γ

j . (1)

Here, N is the number of emitted γ -rays, εc represents
the capture-detection probability and εγ the γ -ray detection
efficiency. In addition, the efficiency-energy proportionality,
ε
γ

j ∝ Eγ

j , required to attain the total cascade-energy response
εc ∝ Ec can be achieved by means of the PHWT [35]. As
mentioned before, the detector response function needs to
be also suitable for neutron-TOF experiments. Aiming at
reducing neutron-induced backgrounds in the detector itself,
organic C6F6 detectors were used in the first experiments
[35,39], which were later replaced by C6D6 further optimized
by means of C-fiber encapsulations and other improvements
[34,62].

Apart from organic scintillation detectors, a NaI(Tl) spec-
trometer has been used at ANNRI J-PARC [44,45,63,64],
which actually demonstrates that it is possible to extend the
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Fig. 2 (Top panel) MC simulation [25] of the neutron sensitivity, which
shows the C6D6-response to neutron-induced γ -ray background in the
walls of the experimental hall. In practice, the resonant structure in
the 1–100 keV neutron-energy range is suppressed due to the loss of
time-energy correlations for the scattered neutrons (see Ref. [67] for
details). (Bottom panel) Capture yield of 93Zr(n, γ ) [66], which shows
the limiting effect of the background level in the keV neutron-energy
range

TED principle to very different types of detection systems.
Exploiting further this aspect, a new approach has been inves-
tigated at n_TOF, which applies γ -ray imaging techniques
to discriminate spatially localized γ -ray background sources
[65]. This concept seems particularly interesting for the mea-
surement of samples with a small neutron-capture cross sec-
tion, where neutrons scattered in the sample and subsequently
captured in the walls of the experimental hall dominate the
background level, instead of neutrons captured directly in the
detectors themselves. This situation is depicted in Fig. 2-top,
which shows that in the keV neutron-energy region of astro-
physical interest the background may be rather dominated by
neutrons captured in the walls of the experimental hall, rather
than in the detectors themselves [25]. The impact of this back-
ground is illustrated in Fig. 2-bottom with the measurement
of 93Zr(n, γ ) performed at n_TOF [66]. As indicated in Ref.
[20], improving the cross-section measurement could help to
constrain even more the thermal conditions in AGB stars.

First attempts to apply γ -ray imaging techniques for
background suppression in neutron-capture experiments at
n_TOF employed a pin-hole γ -camera with a bulky lead
collimator attached to a position-sensitive radiation detec-
tor [68]. This work actually demonstrated for the first time

the possibility to incorporate imaging techniques in neutron-
TOF experiments, although improvements were rather lim-
ited owing to the additional background induced by neutrons
in the massive collimator itself. The problems ascribed to
the use of a massive collimator could be fully overcome by
means of an alternative technique based on electronic col-
limation, originally developed for γ -ray astronomy [69,70].
This new approach based on the Compton imaging technique
[65] has been developed in the framework of the ERC-project
HYMNS [71] during the last years at CERN n_TOF. Comp-
ton imaging is based on the use of two or more planes of
radiation detectors with both energy- and position-sensitivity
operated in time-coincidence. In this way, when a γ -ray
undergoes interaction in several detectors the Compton scat-
tering law can be applied in order to infer information on
the incoming radiation direction. Several technical develop-
ments were necessary in order to adapt existing technologies
to the field of neutron-capture measurements. These devel-
opments were mainly related to the need of achieving good
enough energy resolution with SiPMs and large monolithic
crystals [72], high spatial resolution and linearity that are
challenging due to the big size of the scintillation crystals
[73,74] and implementing a customized dynamic electronic-
collimation method for enhanced performance in the Comp-
ton imaging [75].

Proof-of-principle experiments [76] have been performed
at n_TOF with a prototype of a Total-Energy Detector with
imaging capability, called i-TED. These measurements show
a significant background reduction in the keV neutron-energy
range of interest for astrophysics, when compared to state-
of-the-art C6D6 detectors.

Figure 3 shows a picture of the final i-TED system for
(n, γ ) experiments, which consists of an array of four large-
solid angle Compton cameras in a close configuration around
the capture sample. Every Compton module comprises 5
inorganic scintillation crystals, each of them with a size of
50×50 mm2. The front scatter position-sensitive detector has
a thickness of 15 mm, whereas the four crystals in the rear
absorber plane have a thickness of 25 mm. The modules
have been designed in order to maximize detection efficiency,
while minimizing neutron-sensitivity in the detectors them-
selves. To accomplish the latter goal LaCl3(Ce) was pre-
ferred versus other options, owing to the relatively small
integral capture cross section of Chlorine, and the small con-
tribution of resonances in the keV-energy range of relevance.
The Compton modules are supplemented with 6Li neutron-
absorber pads of 20 mm thicknes for reducing further the
intrinsic neutron sensitivity of the array (see Fig. 3).

Pixelated silicon photomultipliers (SiPMs) are used for the
readout of the 20 inorganic crystals, leading to a total number
of 1280 readout channels. To cope with this large number
a dedicated acquisition system based on ASIC TOFPET2
modules [77] was implemented and adapted to this type of
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Fig. 3 Photograph of the i-TED array during a calibration measure-
ment for the 79Se(n, γ ) experiment in 2022 at CERN n_TOF EAR1

experiments. For further details the reader is referred to Refs.
[75,76] and references therein.

The i-TED array has been recently applied for the first
measurement of the 79Se(n, γ ) capture cross section at
n_TOF EAR1 [78]. A 79Se sample was produced by high-
fluence neutron irradiation in the V4 beam tube of the ILL
reactor in Grenoble. To this aim, an eutectic PbSe-alloy sam-
ple was prepared at the Paul Scherrer Institut (PSI) in Switzer-
land, which allowed one to overcome the difficulties ascribed
to the low melting point of selenium [79]. The measurement
with the i-TED array in EAR1 was intended to reduce the
large scattered-neutron background arising from the large
lead content in the sample, 2.8 g. Furhter, the final PbSe
sample had an activity of 5 MBq of 75Se and 1.6 MBq of
60Co. Therefore, this sample was also measured at the EAR2
station with the set-up described in the following section.
79Se is an important s-process branching nucleus, which is
particularly well suited to constrain the thermal conditions
of the s-process in the weak s process [10,22,80]. Once fully
analyzed, the results of this experiment will help to constrain
the thermal conditions during core He-burning and shell C-
burning in massive stars.

4 Small-volume C6D6 detectors with high rate
capability

In situations where the background in the experiment is dom-
inated by the decay radioactivity of the sample itself it may
become more convenient to exploit the high instantaneous
neutron-flux of the EAR2 measuring station. In this way, the
relative contribution of the sample radioactivity is minimized
with respect to the radiative-capture channel of interest. The
large instantaneous neutron-flux of n_TOF EAR2 [81] is par-

ticularly well suited for these challenging cases. As described
in [82], the high peak flux becomes one of the most impor-
tant features when measuring radioactive samples because
it allows for a reduction of the sample-activity background
contribution relative to the time-interval where the neutron
capture yield is measured. However, in order to exploit the
large peak-neutron flux one requires also radiation detectors
with a fast time-response and a high count-rate capability.
State-of-the-art C6D6 detectors with a volume of ∼1 l [62]
have a relatively large efficiency, which in turn requires a
large sample-detector distance to avoid excessive signal pile-
up and dead time arising from the high count-rate conditions
of about 1 MHz, or more. Also, the i-TED system described
in the preceding section is presently limited to count rates
of about 500 kHz [77], owing to the ASIC-readout scheme
implemented to cope with the 1280 readout channels of the
twenty position-sensitive detectors. It is expected that future
developments will help to enhance the ASIC event-rate capa-
bility and possibly, make the i-TED system also useful for
measurements in the high-flux conditions of EAR2.

To overcome the count-rate limitations of conventional
C6D6 detectors an array of nine small-volume (49 ml) C6D6

detectors [83], was implemented in a compact-ring config-
uration [84] around the capture sample in EAR2 as shown
in Fig. 4. The main advantage of this innovative setup is
that the small detection volume allows one to place the
detectors much closer to the capture sample under study,
and thus enhance also the efficiency for true capture γ -
rays and increase the signal-to-background ratio (SBR) with
respect to previous set-ups based on larger C6D6 detectors
placed further away from the beam-line. The improvement
in SBR is shown in the bottom panel of Fig. 4, which shows
an enhanced signal-to-background ratio for the 197Au(n, γ )
reaction over most of the energy range when measured with
the small-volume C6D6 detectors.

The set-up shown in Fig. 4 was used in the 2022 campaign
for the measurement of the 94Nb(n, γ ) cross section [74]. The
94Nb sample used for this TOF experiment was produced by
high-fluence neutron irradiation of hyperpure niobium sam-
ples [85] in the V4 tube of the ILL-Grenoble reactor. The
final sample contained a total amount of 9×1018 atoms with
an activity dominated (10 MBq) by the β-decay of 94Nb
(2×104 y). The results from this experiment are expected to
shed light on isotopic anomalies observed in pre-solar SiC
grains [86], which apparently require an unexpectedly large
s-process contribution to the abundance of 94Mo.

5 New astrophysics prospects at NEAR using GEAR
and CYCLING

The combination of neutron-TOF with activation measure-
ments, when feasible, may deliver complementary and more
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Fig. 4 (Top) Photograph of the capture setup based on an array of
small-volume C6D6 detectors used for the 94Nb(n, γ ) experiment in
2022 at CERN n_TOF EAR2. (Bottom) Capture-spectra for 197Au(n, γ )
measured with a conventional large C6D6 detector and with a small
volume C6D6 detector in EAR2. Both spectra have been normalized to
the peak of the 4.9 eV resonance

accurate information on a specific cross section (see Table II
in Ref. [10]). When applicable, the activation technique
shows an unsurpassed sensitivity for the measurement of
minuscule sample quantities, as it has been demonstrated
for samples of only ∼ 1014 to 1015 atoms [87,88]. At
high neutron-flux facilities, such as SARAF-LiLiT [89], the
activation method can represent also an advantage for the
measurement of highly radioactive samples [90], where the
high sample-decay induced background would represent an
important limitation for the TOF measurement.

Following this logic, one of the most recent efforts at
n_TOF concerns the development of the neutron-activation
station NEAR [91,92], aiming at exploiting the large neutron-
fluxes in the proximity of the spallation target. Preliminary
MC calculations [93] show the possibility of using suit-
able filters and moderation materials for producing quasi-
Maxwellian neutron-energy spectra over a broad range
between a few and several hundreds keV. A detailed descrip-
tion of the new NEAR installation will be reported in Ref.
[92] and preliminary flux characterization measurements
have been carried out recently [94]. Many of the latter mea-
surements have been carried out at the Gamma-ray spec-
troscopy Experimental ARea (GEAR) of n_TOF, which

is based on a CANBERRA HPGe detector GR5522 sup-
plemented with convenient shielding [92]. This station is
available for conventional neutron-activation measurements
where γ -rays from the decay of the activation products with
half-lives longer than a few hours are measured.

Because of the low duty cycle the average neutron flu-
ence attainable at NEAR is expected to be comparable to
the one available in the past at FZK [87] or currently at
other activation facilities [95,96]. However, one of the unique
features at NEAR will be the possibility to perform activa-
tion measurements on small samples of highly isotopically
enriched (or even pure) material, which can be produced in
sufficient quantities at the nearby ISOLDE [97] and MEDI-
CIS facilities [98]. In addition to the GEAR station, there
is another planned station for fast cyclic-activation mea-
surements at NEAR called CYCLING [99]. The fast-cyclic
activation technique was pioneered at FZK-Karslruhe [100],
where it was applied to measure the neutron-capture cross
section of several nuclides of relevance for nucleosynthe-
sis in AGB stars, such as 107,109Ag(n, γ ) [100], 26Mg(n, γ )
[101], 50Ti(n, γ ) [102] and 19F(n, γ ) [88]. It is worth not-
ing that measurements on isotopes with activation products
with half-lives as short as ∼ 11 s (20F) are accessible with
this technique. The CYCLING station will enable the repeti-
tion of a short irradiation, followed by a rapid transport to a
detector, where the measurement of the decay will take place
and subsequently transported back to the irradiation posi-
tion. This process is repeated for a number of cycles thus
enhancing counting statistics and signal-to-background ratio
for short-lived nuclei.

Thus, with the future combination of ISOLDE and GEAR-
CYCLING it may become possible to access also direct
neutron-capture measurements on several unstable nuclei of
interest for the study of s-process branchings, and also for
the more exotic intermediate i-process of nucleosynthesis
[33]. The i process involves neutron capture at neutron den-
sities of 1013 −1016 cm−3, in between the s and r processes.
Recently, the i process attracted significant interest because
it might explain the abundance pattern of a special kind of
Carbon-Enhanced Metal-Poor stars (CEMPs), called CEMP-
s/r [103]. The site of the i-process has been identified as
the very late thermal pulse H-ingestion of post-AGB stars.
Recent studies show also the relevance of this mechanism for
the early generation of stars [104,105]. One case of interest
in astrophysics is neutron capture on 135Cs (t1/2 = 2 Myr).
The stellar neutron-capture rate of 135Cs is relevant for the
interpretation of the s-process branching at 134Cs (t1/2 = 2 yr)
[10,106] and also for i-process nucleosynthesis, as discussed
latter.

A suitable sample of 135Cs could be ion-implanted at
ISOLDE. After, characterization and activation at NEAR the
decay of the activation product, 136Cs (t1/2=13 d), could be
measured at the GEAR station or any other low-background
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laboratory. The neutron capture of 135Cs at kT = 25 keV
has been already measured at FZK [106] and therefore this
measurement could be a good benchmark case for the per-
formance of the new installation. In addition, at NEAR the
MACS could be also completed for other neutron energy
ranges around kT = 8 keV and kT = 90 keV, where
presently there is no experimental information available.

In the high neutron fluxes characteristic of the i-process
it has been found [107] that variations in the neutron-capture
rates of some specific radioactive isotopes around the N = 82
neutron-shell closure could affect elemental ratio predictions,
involving the benchmark (observable) elements Ba, La and
Eu [107]. Some of the involved reactions, such as 137Cs(n, γ )
may become accessible at NEAR. Commercial samples of
137Cs (t1/2 = 30 yr) are available and could be used for this
measurement. A sample of about 2 × 1014 atoms and an
activity of less than 200 kBq (662 keV γ -rays) could be
a suitable option. Capture on 137Cs leads either directly or
via the detour of the shorter-lived 138mCs (t1/2 = 3 m) to
the activation product 138gCs (t1/2 = 33 m) that emits a
significant γ -ray intensity at 1.4 MeV. Owing to the short
half-life it could be best measured at the CYCLING station.

As reported in Ref. [108], an AGB star experiencing s- or
i-process nucleosynthesis would show very different isotopic
fractions which, although challenging, could be inferred from
observations. Thus, several isotopes of Ba, Nd, Sm and Eu
may be used as tracers of i-process nucleosynthesis. For
example, under i-process conditions the final abundance of
137Ba is larger than that of 138Ba. 138Ba, with N = 82, has a
very small neutron-capture cross section, acting as a bottle-
neck and therefore being copiously produced by the s pro-
cess. The relatively large i-process abundance of 137Ba is due
to the decay of 137Cs which, at variance with the s process,
can be easily reached in i-process conditions. Therefore, the
aforementioned 135Cs(n, γ ) and 137Cs(n, γ ) cross section
measurements could provide a valuable input information
for i-process models and observations. In addition, the mea-
surement of the intermediate 136Cs(n, γ ) may become fea-
sible, assuming that a sample with sufficient mass could be
produced at ISOLDE and later activated at NEAR. After the
neutron activation and sufficient waiting time to let the 136Cs
(t1/2 = 13 d) in the sample decay, one could measure the activ-
ity of the activation product 137Cs (t1/2 = 30 yr) at the GEAR
station. Other similar cases related to the i-process tracers
discussed in Ref. [108] might be also accessible at NEAR,
such as neutron capture on 144Ce (t1/2 = 285 d) leading to
145Ce (t1/2 = 3 m). However, the feasibility with CYCLING
needs to be studied in detail owing to the γ -ray activity from
neighbouring decays (mainly 144Pr).

Finally, there are many other neutron-capture reactions of
interest for the i-process, such as neutron capture on 66Ni
(t1/2 = 55 h), which represents one of the major bottle-necks
in i-process models [109] or neutron capture on 72Zn (t1/2 =

46 h) that determines the i-process abundance of Ge [109].
However, in these cases the conventional activation technique
becomes prohibitive due to the large sample γ -ray activ-
ity, which typically exceeds 100 MBq for sample quantities
of about 1012−13 atoms. For this reason, new ideas based
on storage rings using either inverse kinematics with neu-
tron sources [110,111] or indirect methods such as surrogate
reactions [112,113], may represent the most promising alter-
native in the near future to obtain experimental information
and to constrain the physical conditions of the stellar envi-
ronments.

6 Summary and outlook

This article has presented a few technical contributions of
n_TOF to the field of neutron-capture experiments of astro-
physical interest. These works have been key, on the one
hand, to address the accuracy of the measurements, and even
enhance the systematic precision for this type of studies [34],
an aspect which is closely connected with the 4–5% sys-
tematic error commonly required for reliable astrophysical
interpretation of observational data or meteorites analysis
[10,22,24]. Although historically, a large effort has been
invested in reducing the intrinsic neutron-sensitivity of the
detection apparatus, detailed MC calculations [25] showed
that, in many situations, the background level is dominated by
scattered neutrons, which are captured in the surroundings of
the detectors, rather than in the detection system itself. In this
respect, a novel i-TED detection system [65] based on γ -ray
imaging has been developed, which allows one to attain a sig-
nificant improvement in signal-to-background ratio for such
specific cases in the keV-energy range of astrophysical inter-
est [76]. This system has been employed at CERN n_TOF
for the first measurement of the 79Se(n, γ ) cross section,
which is one of the main branching points in the weak s pro-
cess [10]. Further, for the measurement of highly-radioactive
samples, such as 94Nb described in Sect. 4, a new array of
very small-volume C6D6 detectors was developed and imple-
mented, which enabled also for a significant improvement in
terms of signal-to-background ratio with respect to currently
used C6D6 detectors. This measurement, carried out also in
2022 at CERN n_TOF, will help to shed light on isotopic
Mo-anomalies observed in pre-solar SiC grains [86]. Future
ideas and proposals at n_TOF are related to the new NEAR
experimental area for exploiting also the neutron-activation
technique in measurements of astrophysical interest. In this
respect, current efforts to design a station for fast cyclic
activation measurements (CYCLING) have also been pre-
sented. This installation could help to directly access for
the first time to neutron-capture cross sections on radioac-
tive isotopes, which are of great interest for the intermediate
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neutron-capture process of nucleosynthesis and for the study
of Carbon-Enhanced Metal-Poor stars.
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