42 research outputs found

    Defining the in vivo mechanism of air pollutant toxicity using murine stress response biomarkers.

    Get PDF
    Air pollution can cause a wide range of serious human diseases. For the informed instigation of interventions which prevent these outcomes there is an urgent need to develop robust in vivo biomarkers which provide insights into mechanisms of toxicity and relate pollutants to specific adverse outcomes. We exemplify for a first time the application of in vivo stress response reporters in establishing mechanisms of air pollution toxicity and the application of this knowledge in epidemiological studies. We first demonstrated the utility of reporter mice to understand toxicity mechanisms of air pollutants using diesel exhaust particles compounds. We observed that nitro-PAHs induced Hmox1 and CYP1a1 reporters in a time- and dose-dependent, cell- and tissue-specific manner. Using in vivo genetic and pharmacological approaches we confirmed that the NRF2 pathway mediated this Hmox1-reporter induction stress reporter activity. We then correlated the activation of stress-reporter models (oxidative stress/inflammation, DNA damage and Ah receptor -AhR- activity) with responses in primary human nasal cells exposed to chemicals present in particulate matter (PM; PM2.5-SRM2975, PM10-SRM1648b) or fresh roadside PM10. To exemplify their use in clinical studies, Pneumococcal adhesion was assessed in exposed primary human nasal epithelial cells (HPNEpC). The combined use of HPNEpC and in vivo reporters demonstrated that London roadside PM10 particles induced pneumococcal infection in HPNEpC mediated by oxidative stress responses. The combined use of in vivo reporter models with human data thus provides a robust approach to define the relationship between air pollutant exposure and health risks. Moreover, these models can be used in epidemiological studies to hazard ranking environmental pollutants by considering the complexity of mechanisms of toxicity. These data will facilitate the relationship between toxic potential and the level of pollutant exposure in populations to be established and potentially extremely valuable tools for intervention studies for disease prevention

    In vivo stress reporters as early biomarkers of the cellular changes associated with progeria

    Get PDF
    Ageā€related diseases account for a high proportion of the total global burden of disease. Despite recent advances in understanding their molecular basis, there is a lack of suitable early biomarkers to test selected compounds and accelerate their translation to clinical trials. We have investigated the utility of in vivo stress reporter systems as surrogate early biomarkers of the degenerative disease progression. We hypothesized that cellular stress observed in models of human degenerative disease preceded overt cellular damage and at the same time will identify potential cytoprotective pathways. To test this hypothesis, we generated novel accelerated ageing (progeria) reporter mice by crossing the LmnaG609G mice into our oxidative stress/inflammation (Hmox1) and DNA damage (p21) stress reporter models. Histological analysis of reporter expression demonstrated a timeā€dependent and tissueā€specific activation of the reporters in tissues directly associated with Progeria, including smooth muscle cells, the vasculature and gastrointestinal tract. Importantly, reporter expression was detected prior to any perceptible deleterious phenotype. Reporter expression can therefore be used as an early marker of progeria pathogenesis and to test therapeutic interventions. This work also demonstrates the potential to use stress reporter approaches to study and find new treatments for other degenerative diseases

    Potential of in vivo stress reporter models to reduce animal use and provide mechanistic insights in toxicity studies

    Get PDF
    Chemical risk assessment ensures protection from the toxic effects of drugs and manmade chemicals. To comply with regulatory guidance, studies in complex organisms are required, as well as mechanistic studies to establish the relevance of any toxicities observed to man. Although in vitro toxicity models are improving, in vivo studies remain central to this process. Such studies are invariably time-consuming and often involve large numbers of animals. New regulatory frameworks recommend the implementation of ā€œsmartā€ in vivo approaches to toxicity testing that can effectively assess safety for humans and comply with societal expectations for reduction in animal use. A major obstacle in reducing the animals required is the time-consuming and complexity of the pathological endpoints used as markers of toxicity. Such endpoints are prone to inter-animal variability, subjectivity and require harmonisation between testing sites. As a consequence, large numbers of animals per experimental group are required. To address this issue, we propose the implementation of sophisticated stress response reporter mice that we have developed. These reporter models provide early biomarkers of toxic potential in a highly reproducible manner at single-cell resolution, which can also be measured non-invasively and have been extensively validated in academic research as early biomarkers of stress responses for a wide range of chemicals at human-relevant exposures. In this report, we describe a new and previously generated models in our lab, provide the methodology required for their use and discuss how they have been used to inform on toxic risk. We propose our in vivo approach is more informative (refinement) and reduces the animal use (reduction) compared to traditional toxicity testing. These models could be incorporated into tiered toxicity testing and used in combination with in vitro assays to generate quantitative adverse outcome pathways and inform on toxic potential

    Human IFIT1 inhibits mRNA translation of rubulaviruses but not other members of the Paramyxoviridae family

    Get PDF
    This work was supported by The Welcome Trust (101788/Z/13/Z, 101792/Z/13/Z) and Medical research council grant (G1100110/1, MR/K024213/1).We have previously shown that IFIT1 is primarily responsible for the antiviral action of interferon (IFN) alpha/beta against parainfluenza virus (PIV) type 5, selectively inhibiting the translation of PIV5 mRNAs. Here we report that whilst PIV2, PIV5 and mumps virus (MuV) are sensitive to IFIT1, non-rubulavirus members of the paramyxoviridae such as PIV3, Sendai virus (SeV) and canine distemper virus (CDV) are resistant. The IFIT1-sensitivity of PIV5 was not rescued by co-infection with an IFIT1-resistant virus (PIV3), demonstrating that PIV3 does not specifically inhibit the antiviral activity of IFIT1 and that the inhibition of PIV5 mRNAs is regulated by cis-acting elements. We developed an in vitro translation system using purified human IFIT1 to further investigate the mechanism of action of IFIT1. Whilst the translation of PIV2, PIV5 and MuV mRNAs were directly inhibited by IFIT1, the translation of PIV3, SeV and CDV mRNAs were not. Using purified human mRNA capping enzymes we show biochemically that efficient inhibition by IFIT1 is dependent upon a 5ā€™ guanosine nucleoside cap (which need not be N7-methylated) and that this sensitivity is partly abrogated by 2ā€™ O methylation of the cap 1 ribose. Intriguingly, PIV5 M mRNA, in contrast to NP mRNA, remained sensitive to inhibition by IFIT1 following in vitro 2ā€™ O methylation, suggesting that other structural features of mRNAs may influence their sensitivity to IFIT1. Thus, surprisingly, the viral polymerases (which have 2ā€™ -O-methyltransferase activity) of rubulaviruses do not protect these viruses from inhibition by IFIT1. Possible biological consequences of this are discussed. Importance Paramyxoviruses cause a wide variety of diseases and yet most of their genes encode for structural proteins and proteins involved in their replication cycle. Thus the amount of genetic information that determines the type of disease paramyxoviruses cause is relatively small. One factor that will influence disease outcomes is how they interact with innate host cell defences, including the interferon (IFN) system. Here we show that different paramyxoviruses interact in distinct ways with cells in a pre-existing IFN-induced antiviral state. Strikingly, all the rubulaviruses tested were sensitive to the antiviral action of ISG56/IFIT1, whilst all the other paramyxoviruses tested were resistant. We developed novel in vitro biochemical assays to investigate the mechanism of action of IFIT1, demonstrating that the mRNAs of rubulaviruses can be directly inhibited by IFIT1 and that this is at least partially because their mRNAs are not correctly methylated.Publisher PDFPeer reviewe

    The role of ERK5 in endothelial cell function

    Get PDF
    Extracellular-signal-regulated kinase 5 (ERK5), also termed big MAPK1 (BMK1), is the most recently discovered member of the mitogen-activated protein kinase (MAPK) family. It is expressed in a variety of tissues and is activated by a range of growth factors, cytokines and cellular stresses. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade is critical for normal cardiovascular development and vascular integrity. In vitro studies have revealed that, in endothelial cells, ERK5 is required for preventing apoptosis, mediating shear-stress signalling and regulating tumour angiogenesis. The present review focuses on our current understanding of the role of ERK5 in regulating endothelial cell function

    Inesta-Vaquera, Francisco

    No full text
    corecore