381 research outputs found

    Effects of Thermal Variations on the Tensile Behavior of FRCM Strengthening Systems

    Get PDF
    Use of fabric-reinforced cementitious matrices (FRCM) is a very efficient strengthening solution for improving the structural behavior of existing masonry elements. FRCM are capable of improving the load-bearing capacity of masonry panels, at the same time providing more ductile behavior. However, the mechanical performances of these materials could be significantly affected by environmental conditions, such as exposure to thermal variations. This aspect should be properly assessed by guidelines and standards devoted to the design of strengthening interventions. Within this framework, the objective of the present research was to evaluate the effect of a temperature increase on the tensile behavior of various FRCM systems, composed of steel, basalt, or aramid-glass fibers and lime-based or cement-based mortar matrices. Tensile tests were performed for each system under different thermal conditioning protocols, comprising different target temperatures, exposure periods, test conditions, and adopted heating sources. The test results showed that the effect of temperature is more evident in the first phases of the tensile tests, that is, during the uncracked phase and the mortar matrix cracking phase, whereas it is less significant in the final phase, which was more related to fiber behavior. Comparisons between the different thermal conditioning procedures are critically discussed within the paper and, in light of the results obtained, recommendations are included to optimize the testing procedures for future research and qualification procedures

    Technical developments for computed tomography on the CENBG nanobeam line

    Get PDF
    The use of ion microbeams as probes for computedtomography has proven to be a powerful tool for the three-dimensional characterization of specimens a few tens of micrometers in size. Compared to other types of probes, the main advantage is that quantitative information about mass density and composition can be obtained directly, using specific reconstruction codes. At the Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG), this technique was initially developed for applications in cellular biology. However, the observation of the cell ultrastructure requires a sub-micron resolution. The construction of the nanobeamline at the Applications Interdisciplinaires des Faisceaux d’Ions en Region Aquitaine (AIFIRA) irradiation facility has opened new perspectives for such applications. The implementation of computedtomography on the nanobeamline of CENBG has required a careful design of the analysis chamber, especially microscopes for precise sample visualization, and detectors for scanning transmission ion microscopy (STIM) and for particle induced X-ray emission (PIXE). The sample can be precisely positioned in the three directions X, Y, Z and a stepper motor coupled to a goniometer ensures the rotational motion. First images of 3D tomography were obtained on a reference sample containing microspheres of certified diameter, showing the good stability of the beam and the sample stage, and the precision of the motion

    Awareness and Sources of Knowledge about Obstructive Sleep Apnea: A Cross Sectional Survey Study

    Get PDF
    Obstructive sleep apnea (OSA) is a multifactorial sleep breathing disorder, seriously impacting quality of life and involving approximately 1 billion of the world’s population. It is characterized by episodes of total cessation of breathing or decreases in airflow during sleep. Available data suggest that most cases of OSA remain undiagnosed even in developed countries. This is due to a lack of widespread knowledge about this pathology and the medical morbidities and mortality it brings about, among both laypeople and physicians. Moreover, despite receiving indications about the need to undergo specific evaluations for OSA signs and symptoms, sometimes patients do not pay sufficient attention to the problem. This is probably due to a lack of correct information on these issues. The present investigation analyzed the level of knowledge about OSA pathology and the sources through which a group of OSA patients gained information on their condition. A survey of 92 patients diagnosed with OSA (mean age 60.55 ± 10.10) and referred to the Unit of Orthodontics and Dental Sleep Medicine of the University of Bologna was conducted by means of a questionnaire investigating sociodemographic characteristics, the level of general knowledge on OSA pathology and its possible medical consequences. Despite about two third (67.38%) of the population demonstrating extensive knowledge, remarkably, a group of subjects (20.65%) had poor awareness of the OSA condition. A statistically significant correlation emerged between the level of knowledge about OSA and the level of education (p = 0.002). A great effort should be made to improve the quality of information and the communication modalities for OSA to enable a fully appropriate awareness of the condition among patients

    Experimental Study on the Shear Behavior of FRCM Strengthened Masonry Panels

    Get PDF
    nnovative strengthening solutions, such as Fiber Reinforced Cementitious Matrix (FRCM), are becoming increasingly diffused for the retrofitting of existing masonry structures with the aim of reducing the seismic vulnerability of these construction typologies. In recent years, many studies have demonstrated the suitability of these materials in enhancing the shear capacity of masonry walls and improve the overall structural behavior, avoiding fragile collapse mechanisms. In the present work, six diagonal compression tests were performed on unstrengthened and FRCM strengthened masonry panels to evaluate the improvements attributable to the presence of the FRCM systems. Two different bidirectional basalt grids were applied to the masonry samples, with and without mechanical anchorages. The tensile and bond properties of the chosen FRCM systems were investigated through laboratory tests. The objective was, indeed, to compare the performances of two textiles, characterized by different densities, and to investigate the role of mechanical anchorages. The experimental results confirmed the efficiency of the FRCM strengthening systems in improving the shear behavior of masonry panels. The FRCM strengthened samples experienced a considerable strength increase and less brittle failure mechanisms. The roles of both the mortar matrix, the fiber grids and the mechanical anchorages were highlighted by analyzing the onset of cracking and the failure propagation within the samples

    Litter quality and temperature modulate microbial diversity effects on decomposition in model experiments

    Get PDF
    The consequences of decline in biodiversity for ecosystem functioning is a major concern in soil ecology. Recent research efforts have been mostly focused on terrestrial plants, while, despite their importance in ecosystems, little is known about soil microbial communities. This work aims at investigating the effects of fungal and bacterial species richness on the dynamics of leaf litter decomposition. Synthetic microbial communities with species richness ranging from 1 to 64 were assembled in laboratory microcosms and used in three factorial experiments of decomposition. Thereafter, the functionality of the different microcosms was determined by measuring their capability to decompose materials with different chemical properties, including two species of litter (Quercus ilex L. and Hedera helix L.), cellulose strips and woody sticks. Incubation was done in microcosms at two temperatures (12°C and 24°C) for 120 days. The number of microbial species inoculated in the microcosms positively affected decomposition rates of Q. ilex and H. helix litters, while relationships found for cellulose and wood were not statistically significant. Diversity effect was greater at higher incubation temperature. We found lower variability of decay rates in microcosms with higher inoculated species richness of microbial communities. Our study pointed out that the relationships between inoculum microbial diversity and litter decomposition is dependent on temperature and litter quality. Therefore, the loss of microbial species may adversely affects ecosystem functionality under specific environmental conditions

    Imaging biomarkers in prostate cancer: role of PET/CT and MRI

    Get PDF
    Prostate-specific antigen (PSA) is currently the most widely used biomarker of prostate cancer (PCa). PSA suggests the presence of primary tumour and disease relapse after treatment, but it is not able to provide a clear distinction between locoregional and distant disease. Molecular and functional imaging, that are able to provide a detailed and comprehensive overview of PCa extension, are more reliable tools for primary tumour detection and disease extension assessment both in staging and restaging. In the present review we evaluate the role of PET/CT and MRI in the diagnosis, staging and restaging of PCa, and the use of these imaging modalities in prognosis, treatment planning and response assessment. Innovative imaging strategies including new radiotracers and hybrid scanners such as PET/MRI are also discussed

    A chlorophyll-deficient, highly reflective soybean mutant: radiative forcing and yield gaps

    Get PDF
    Sunlight absorbed at the Earth’s surface is re-emitted as longwave radiation. Increasing atmospheric concentrations of CO2 and other greenhouse gases trap an increasing fraction of such heat, leading to global climate change. Here we show that when a chlorophyll (Chl)-deficient soybean mutant is grown in the field, the fraction of solar-irradiance which is reflected, rather than absorbed, is consistently higher than in commercial varieties. But, while the effect on radiative forcing during the crop cycle at the scale of the individual experimental plot was found to be large (−4.1± 0.6 W m−2 ), global substitution of the current varieties with this genotype would cause a small increase in global surface albedo, resulting in a global shortwave radiative forcing of −0.003 W m−2 , corresponding to 4.4 Gt CO2eq. At present, this offsetting effect would come at the expense of reductions to yields, probably associated with different dynamic of photosynthetic response in the Chl-deficient mutant. The idea of reducing surface-driven radiative forcing by means of Chl-deficient crops therefore requires that novel high-yielding and high-albedo crops are made available soon.publishedVersio

    Arabidopsis thaliana response to extracellular dna: Self versus nonself exposure

    Get PDF
    The inhibitory effect of extracellular DNA (exDNA) on the growth of conspecific individuals was demonstrated in different kingdoms. In plants, the inhibition has been observed on root growth and seed germination, demonstrating its role in plant\u2013soil negative feedback. Several hypotheses have been proposed to explain the early response to exDNA and the inhibitory effect of conspecific exDNA. We here contribute with a whole-plant transcriptome profiling in the model species Arabidopsis thaliana exposed to extracellular self-(conspecific) and nonself-(heterologous) DNA. The results highlight that cells distinguish self-from nonself-DNA. Moreover, confocal microscopy analyses reveal that nonself-DNA enters root tissues and cells, while self-DNA remains outside. Specifically, exposure to self-DNA limits cell permeability, affecting chloroplast functioning and reactive oxygen species (ROS) production, eventually causing cell cycle arrest, consistently with macroscopic observations of root apex necrosis, increased root hair density and leaf chlorosis. In contrast, nonself-DNA enters the cells triggering the activation of a hypersensitive response and evolving into systemic acquired resistance. Complex and different cascades of events emerge from exposure to extracellular selfor nonself-DNA and are discussed in the context of Damage-and Pathogen-Associated Molecular Patterns (DAMP and PAMP, respectively) responses

    Correlations between tumor-infiltrating and circulating lymphocyte subpopulations in advanced renal cancer patients treated with nivolumab

    Get PDF
    Background: In clinical trials with immunotherapy, histological features such as tumor-infiltrating lymphocytes (TILs) are investigated as potential predictive biomarkers, with the limit of an outdated parameter for a typically dynamic element. Methods: This explorative study compared, in metastatic renal cell carcinoma (mRCC) patients, basal pathological data about TILs on diagnostic histological specimens with circulating lymphocyte subpopulations measured before and during therapy with nivolumab. Results: Of 11 mRCC patients, 5 had low presence of TILs (L-TILs), 3 moderate amount (M-TILs) and 3 high number (H-TILs). Overall, 8 patients had low intratumoral pathological CD4+/CD8+ ratio (LIPR) ≤1 and 3 cases high intratumoral pathological ratio (HIPR) ≥2. Of 8 patients with LIPR, only 2 matched with low circulating CD4+/CD8+ ratio (LCR) ≤1; 5 had high circulating ratio (HCR) ≥2. All 3 cases with HIPR (≥2) conversely had LCR (≤1). Circulating CD4+/CD8+ ratio remained unchanged during therapy (mean-0.12 in 8 weeks). The respective percentage values of CD4+ and CD8+ circulating T cells also remained stable (variation 0%); the absolute value of CD4+ was more likely to increase (mean +46.3/mm3); the level of CD8+ tended to slightly decrease (mean-6.5/mm3). No correlation of lymphocyte subpopulations with treatment outcome was found. Of note, we did not evidence correspondence between histopathological and circulating findings in terms of T-lymphocyte subpopulations, also suggesting the inconsistency of circulating data in terms of relative variations. Conclusions: Considering the likely high dynamism of TILs, rebiopsy before therapy might be proposed to assess the utility of TILs characterization for predictive purpose. (www.actabiomedica.it)
    • …
    corecore