134 research outputs found

    Mechanical Properties of Glassy Polyethylene Nanofibers via Molecular Dynamics Simulations

    Get PDF
    The extent to which the intrinsic mechanical properties of polymer fibers depend on physical size has been a matter of dispute that is relevant to most nanofiber applications. Here, we report the elastic and plastic properties determined from molecular dynamics simulations of amorphous, glassy polymer nanofibers with diameter ranging from 3.7 to 17.7 nm. We find that, for a given temperature, the Young’s elastic modulus E decreases with fiber radius and can be as much as 52% lower than that of the corresponding bulk material. Poisson’s ratio ν of the polymer comprising these nanofibers was found to decrease from a value of 0.3 to 0.1 with decreasing fiber radius. Our findings also indicate that a small but finite stress exists on the simulated nanofibers prior to elongation, attributable to surface tension. When strained uniaxially up to a tensile strain of ε = 0.2 over the range of strain rates and temperatures considered, the nanofibers exhibit a yield stress σy between 40 and 72 MPa, which is not strongly dependent on fiber radius; this yield stress is approximately half that of the same polyethylene simulated in the amorphous bulk.DuPont MIT AllianceDuPont (Firm) (Young Professor Award

    Evaluation of Commercial Probiotic Products

    Get PDF
    Although there is a vast number of probiotic products commercially available due to their acceptability and increasing usage, their quality control has continuously been a major concern. This study aimed to assess some commercially available probiotics on the UK market for content in relation to their label claim. Seven products were used for the study. The bacteria content were isolated, identified and enumerated on selective media. The results revealed that all products evaluated contained viable probiotic bacteria but only three out of the seven products (43%) contained the claimed culture concentration or more. None of the multispecies product contained all the labelled probiotic bacteria. Misidentification of some species occurred. The results concurred with previous studies and showed that quality issues with commercial probiotics remain. Since probiotic activity is linked with probiotic concentration and is strain specific, the need exist for a global comprehensive legislation to control the quality of probiotics whose market is gaining huge momentum

    Placental lactogens induce serotonin biosynthesis in a subset of mouse beta cells during pregnancy

    Get PDF
    AIMS/HYPOTHESIS: Upregulation of the functional beta cell mass is required to match the physiological demands of mother and fetus during pregnancy. This increase is dependent on placental lactogens (PLs) and prolactin receptors, but the mechanisms underlying these events are only partially understood. We studied the mRNA expression profile of mouse islets during pregnancy to gain a better insight into these changes. METHODS: RNA expression was measured ex vivo via microarrays and quantitative RT-PCR. In vivo observations were extended by in vitro models in which ovine PL was added to cultured mouse islets and MIN6 cells. RESULTS: mRNA encoding both isoforms of the rate-limiting enzyme of serotonin biosynthesis, tryptophan hydroxylase (TPH), i.e. Tph1 and Tph2, were strongly induced (fold change 25- to 200-fold) during pregnancy. This induction was mimicked by exposing islets or MIN6 cells to ovine PLs for 24 h and was dependent on janus kinase 2 and signal transducer and activator of transcription 5. Parallel to Tph1 mRNA and protein induction, islet serotonin content increased to a peak level that was 200-fold higher than basal. Interestingly, only a subpopulation of the beta cells was serotonin-positive in vitro and in vivo. The stored serotonin pool in pregnant islets and PL-treated MIN6 cells was rapidly released (turnover once every 2 h). CONCLUSIONS/INTERPRETATION: A very strong lactogen-dependent upregulation of serotonin biosynthesis occurs in a subpopulation of mouse islet beta cells during pregnancy. Since the newly formed serotonin is rapidly released, this lactogen-induced beta cell function may serve local or endocrine tasks, the nature of which remains to be identified

    De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures.

    Get PDF
    Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability

    The pancreatic beta cell surface proteome

    Get PDF
    The pancreatic beta cell is responsible for maintaining normoglycaemia by secreting an appropriate amount of insulin according to blood glucose levels. The accurate sensing of the beta cell extracellular environment is therefore crucial to this endocrine function and is transmitted via its cell surface proteome. Various surface proteins that mediate or affect beta cell endocrine function have been identified, including growth factor and cytokine receptors, transporters, ion channels and proteases, attributing important roles to surface proteins in the adaptive behaviour of beta cells in response to acute and chronic environmental changes. However, the largely unknown composition of the beta cell surface proteome is likely to harbour yet more information about these mechanisms and provide novel points of therapeutic intervention and diagnostic tools. This article will provide an overview of the functional complexity of the beta cell surface proteome and selected surface proteins, outline the mechanisms by which their activity may be modulated, discuss the methods and challenges of comprehensively mapping and studying the beta cell surface proteome, and address the potential of this interesting subproteome for diagnostic and therapeutic applications in human disease

    New Insight on Human Type 1 Diabetes Biology: nPOD and nPOD-Transplantation

    Get PDF
    The Juvenile Diabetes Research Foundation (JDRF) Network for Pancreatic Organ Donors with Diabetes (JDRF nPOD) was established to obtain human pancreata and other tissues from organ donors with type 1 diabetes (T1D) in support of research focused on disease pathogenesis. Since 2007, nPOD has recovered tissues from over 100 T1D donors and distributed specimens to approximately 130 projects led by investigators worldwide. More recently, nPOD established a programmatic expansion that further links the transplantation world to nPOD, nPOD-Transplantation; this effort is pioneering novel approaches to extend the study of islet autoimmunity to the transplanted pancreas and to consent patients for postmortem organ donation directed towards diabetes research. Finally, nPOD actively fosters and coordinates collaborative research among nPOD investigators, with the formation of working groups and the application of team science approaches. Exciting findings are emerging from the collective work of nPOD investigators, which covers multiple aspects of islet autoimmunity and beta cell biology
    • …
    corecore