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Abstract Human type 1 diabetes (T1D) is considered to be an
autoimmune disease, with CD8+ T-cell-mediated cytotoxicity
being directed against the insulin-producing beta cells, leading
to a gradual decrease in beta cell mass and the development of
chronic hyperglycemia. The histopathologically defining le-
sion in recent-onset T1D patients is insulitis, a relatively subtle
leucocytic infiltration present in approximately 10 % of the
islets of Langerhans from children with recent-onset (<1 year)
disease. Due to the transient nature of the infiltrate, its hetero-
geneous distribution in the pancreas and the nature of the
patient population, material for research is extremely rare
and limited to a cumulative total of approximately 150 cases
collected over the past century. Most studies on the
etiopathogenesis of T1D have therefore focused on the non-
obese diabetic (NOD) mouse model, which shares many
genetic and immunological disease characteristics with human
T1D, although its islet histopathology is remarkably different.
In view of these differences and in view of the limited success
of clinical immune interventions based on observations in the
NOD mouse, there is a renewed focus on studying the path-
ogenetic process in patient material.
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Human type 1 diabetes

Type 1 diabetes (T1D) is a chronic (auto)immune disease that
causes a specific destruction of most insulin-producing

pancreatic beta cells, leading to overt hyperglycemia, a need
for lifelong exogenous insulin replacement therapy and a high
risk for developing debilitating chronic complications.
Although the disease can occur at any age, there is a peak in
newly diagnosed cases between 5 and 7 years of age and at or
near puberty. In contrast to other autoimmune diseases, where
there is a clear female preponderance, slightly more males
develop T1D than females. The incidence shows geographical
variability, ranging between 0.1 and 60 cases per 100,000
people, but its true level is difficult to ascertain as the disease
is probably under-diagnosed, with many T2D patients also
showing signs of immunological involvement [1].

The classical model for the pathogenesis of T1D is that
an environmental factor triggers autoimmunity in geneti-
cally susceptible individuals. As discussed below autoanti-
bodies against insulin develop first, followed by other types
of autoantibodies, often directed against components of the
insulin secretory granule. The presence of autoantibodies is
usually taken as a sign of ongoing beta cell destruction,
with beta cell mass decreasing as autoimmunity expands as
witnessed by the increasing number of autoantibodies. The
decrease first becomes evident as signs of glucose intoler-
ance develop, followed by clinical diabetes when a thresh-
old of residual beta cell mass is reached that is usually
suggested to be around 10 % of normal [2]. As will be
shown, many elements of this classical model are currently
under debate.

This review deals specifically with insulitis, a multifocal
inflammatory reaction limited to the islets of Langerhans
considered to be characteristic for T1D and responsible for
the severe loss of insulin-producing beta cells, resulting in loss
of glycemic control and its clinical consequences. It summa-
rizes the main findings in patients and discusses the similari-
ties and differences of the human disease with a frequently
used animal model for the disease, the non-obese diabetic
(NOD) mouse. The genetics, immunology and clinical aspects
of the disease have been discussed in many excellent reviews
[1, 3–5] and will only be discussed briefly.
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Progress in establishing the etiopathogenesis of T1D has
been slow. There are several reasons for this: (a) the diffuse
nature of the endocrine pancreas makes it a difficult object to
study. The endocrine islets of Langerhans are scattered
throughout the exocrine parenchyma and form only 1–2 %
of gland volume [6]. The focal nature of some of the histo-
pathological changes, with inflammatory lesions observed in
some pancreatic lobes but not in others, requires multiple
samples for study. In addition, some of the lesions, like
insulitis, are transient and usually only observed in recent-
onset patients. (b) Pancreatic biopsies are not normally taken
in T1D patients due to the risk of pancreatitis. Biopsies have
only been used in small series of recent-onset T1D patients
[7]. Although initially considered to be relatively safe [8], they
were later shown to have considerable side-effects and recent
clinical trials were ended prematurely. Very few T1D patients
have therefore been biopsied. (c) Due to the nature of the
pancreatic gland, with its high content of digestive enzymes,
the tissue is prone to rapid autolysis and well-preserved tissue
is often only obtained from patients who were autopsied
within a few hours after death. (d) Improved clinical manage-
ment has resulted in fewer patients dying in diabetic
ketoacidosis, leading to a decreased number of cases coming
to autopsy. Together, these factors make that very few cases
are available for study. The most characteristic lesion in T1D,
the presence of an inflammatory infiltration of the islets of
Langerhans (insulitis), has been reported in cumulative total of
only 150 cases collected over the past 100 years [9]. Most of
these cases are no longer available for study; detailed clinical
information is often lacking and the material is usually fixed
and paraffin-embedded, which limits molecular analysis. In
practice, this means that few pathologists have ever seen
insulitis during their professional career and that each year
on average only one or two new recent-onset T1D cases
become available for study worldwide.

The lack of human material has led many investigators to
focus on animal models for the disease. In this context, the
NOD mouse has become the model of choice. The NOD
mouse shares many characteristics with human T1D, but as
will be discussed below, there are also considerable differ-
ences. Although animal models yield invaluable information
on molecular and cellular processes under conditions of auto-
immunity, they also carry the risk that they may not represent
the human disease in all its complexity, risking a situation
where our view of disease progression is to a large extent
derived from animal studies rather than from observations in
patients. Careful and continuous validation of the animal
model is therefore necessary to mitigate such a risk.
Differences between the NODmouse model and T1D patients
have been detailed in a number of recent overviews [10–12],
and concern has been raised that the differences in
etiopathogenesis might be more profound than previously
realized. Such concerns have been amplified by the fact that

many immune intervention studies, often based on often dra-
matically positive results in NOD mice, resulted in limited
success in patients [13].

Many potential treatments have been developed in the
NOD mouse by which the disease can be postponed,
prevented, or even cured after onset of overt symptoms.
These interventions were tabulated in a number of reviews
in which it was noted that >195 immune interventions were
successful in the NOD model, but that virtually none were
effective in patients [11, 12]. One immune intervention devel-
oped in the NOD mouse model, consisting of a series of low
dose anti-CD3 antibody injections [14], was found to tran-
siently preserve residual beta cell function in patients when
given shortly after disease onset [15]. However, the effects are
minor compared to those in the NOD mice, where the same
treatment leads to complete remission.

Due to these somewhat disappointing results, there is a
renewed interest in islet pathology in human material in order
to validate previous observationsmade in the NODmouse and
to study in more detail any differences that are established.
Such new research is facilitated by the recent establishment of
large tissue banks with optimally preserved human donor
pancreas obtained from control, sub-clinical T1D or recent-
onset T1D subjects [9, 16].

The discovery of insulitis

Insulitis is defined as a predominantly lymphocytic infiltra-
tion, limited to the islets of Langerhans. It was first described
in 1902 in a 10-year-old who died in ketoacidosis [17]
and was termed ‘insulitis’ by the Swiss pathologist von
Meyenburg [18]. Although initially considered to be a rare
event, it was later found to be characteristic for diabetes in
children with recent-onset (<1 year) disease [19, 20]. The
infiltrate contains predominantly CD8+ lymphocytes, in ad-
dition to CD4+ lymphocytes, B lymphocytes and macro-
phages [21]. Cellular immunity is accompanied by humoral
immunity, with circulating autoantibodies against several dif-
ferent beta cell autoantigens [1]. The nature of the autoantigen
against which the immune response is directed is still being
debated, as will be discussed below.

Although insulitis was first observed more than a century
ago [17], its true significance was not recognized until 1958
when Lecompte [20] observed that the lesion appeared to be
characteristic for children with acute onset disease and short
duration. He stressed that the lesion was relatively rare, but
that it might be under-diagnosed as it is easily missed using
the conventional stains then in use. In 1965, Gepts [19] was
able to assess the incidence of insulitis in a large cohort of
patients: he studied 22 recent-onset cases (<1 year) of diabetes
below the age of 40 and found that 15 cases (68 %) showed
insulitis. He also observed that the insulitic lesions appeared to
be transient as they were no longer present in patients with a
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disease duration of >1 year. Lastly, he showed that beta cell
mass in his study group was reduced to approximately 10% of
normal controls and that many islets were atrophic, consisting
only of non-beta cells. Arguably, he laid the basis for the
classification of T1D as an autoimmune disease [22]. In a
1978 follow-up study [23], using the then newly developed
immunohistochemical staining techniques for islet hormones,
he observed that insulitis preferentially targeted islets with
remaining beta cells and that it was virtually absent in islets
from which the beta cells had disappeared. This led him to
propose that ‘insulitis represents an immune reaction of the
delayed type, specifically directed against beta cells’.

His studies were confirmed by Foulis [24], who used a
computerized survey of deaths in the UK and was able to
retrieve tissue blocks of 119 patients who died in diabetic
ketoacidosis before the age of 20. He observed insulitis in
47 out of 60 patients with recent-onset (<1 year) disease
(78 %). He observed that insulitis was present in 23 % of the
insulin-containing islets, and in 1 % of the insulin-deficient
islets, thus confirming Gepts’s observation that the immuno-
logical reactivity appeared to be directed specifically to beta
cells.

Together, the studies by Gepts and Foulis represent almost
half of the 150 cases with insulitis that have been described up
to this day [7, 8, 17–20, 23–54]. Major follow-up studies have
been lacking due to the reasons outlined above, and only
recently a renewed effort to study insulitis in human T1D
was initiated using large biobanks of human donor pancreas
in Brussels and Gainesville-FL (JDRF-nPOD).

Phenotyping insulitis

The infiltrating cells in insulitic lesions were first phenotyped
in a 12-year-old girl who died 1 month after diagnosis [26].
Immunohistochemical staining showed that these cells
consisted mainly of T lymphocytes, with the T-cytotoxic/
suppressor subtype being most abundant, and T-helper cells
and other leucocytes being present at lower frequency. Later
studies confirmed a predominantly CD8+ T-cell phenotype
but also pointed to an important presence of macrophages [35,
42]. An extensive reanalysis of 279 individual islets with
insulitis from 29 recent-onset cases showed that the composi-
tion differed depending on the stage of insulitic lesion: early
stage lesions, where beta cell loss is not yet evident, showed
infiltration of predominantly CD8+ T cells in addition to
CD68+ macrophages, CD4+ T lymphocytes and CD20+ B
lymphocytes. late-stage insulitic lesions, with <10% beta cells
in the islets, showed a similar composition, with the exception
of CD20+ B lymphocytes that were four-fold more frequent
than in early stage lesions. Tetramer staining of HLA-0201-
positive patients [29] with a disease duration of <1 week to
8 years showed that CD8+ T cells found within insulitic
lesions recognize several different islet antigens including

amino acid sequences from insulin, preproinsulin (aa 15–
23), islet-specific glucose-6-phosphatase catalytic subunit re-
lated protein (IGRP, aa 265–273), IA-2 (tyrosine phosphatase-
like protein aa 797–805), GAD65 (glutamic acid decarboxyl-
ase aa 114–123) and preproIAPP (human islet amyloid poly-
peptide precursor protein aa 5–13). The four recent-onset
patients that were tested showed only islets with a single
positivity for islet-autoreactive T cells (insulin or IGRP),
indicating a possible clonal origin of the infiltrating T cells,
while four chronic patients with disease duration longer than a
year showed multiple islet-reactive specificities. These results
are consistent with an autoimmune CD8 T-cell-mediated beta
cell loss that is initially directed against insulin (and or IGRP)
epitopes and later, because of the release of additional beta cell
antigens caused by ongoing beta cell death, evolves into a
broader reactivity pattern. The (tentative) identification of T-
cell specificities opens new strategies for treatment, possibly
via the induction of tolerance. Clearly, studies into the speci-
ficity of the infiltrating CD8 T cells are still in an early phase.
The number of patients that were investigated was small, they
were already diagnosed with the disease, and as the authors
stress themselves, the signal intensity of the tetramer staining
was very low. Interestingly, the CD8 specificity pattern close-
ly resembles the pattern of autoantibodies found in T1D
patients and in individuals at risk for developing the disease.
The autoantibodies that are routinely tested using internation-
ally validated assays include reactivities against insulin
(IAA—insulin autoantibodies), IA-2 autoantibodies (IA-
2A; ICA512), GAD autoantibodies (GADA) and zinc trans-
porter8 autoantibodies (ZnT8A) [1, 2]. Whether the similarity
in reactivity pattern with that found in CD8+ islet T cells
indicates related pathogenetic pathways or is an indication
that both phenomena are a consequence rather than a cause
of beta cell death, with the secretory-granules having a strong
immunogenic effect due to their particulate nature, is open to
discussion. Immunophenotyping studies in preclinical lesions
[37] will be of particular importance in this context.

Insulitis in the preclinical phase

The lesions we observe in recent-onset T1D are probably the
result of a process that in many cases has been active for a
considerable period of time. Diabetes registry studies, espe-
cially in first-degree relatives of T1D patients, have shown
that autoantibodies against islet cell antigens can be present
many years before clinical disease. They confer a risk that
depends on the number of autoantibody specificities being
present [55]. Autoantibodies tend to appear sequentially, with
IAA appearing first, followed by GADA, IA-2A and ZnT8A
[56]. They can occur over a wide age range and positivity can
be transient, although only persistent positivity appears to be
associated with a high risk of progression to T1D.
Development of IA-2A and/or ZnT8A confer a high and
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age-independent risk of approximately 50% of developing the
disease within a 5-year period.

Studies on autoantibody-positive non-diabetic organ do-
nors surprisingly showed only limited evidence of islet lesions
and beta cell damage [29, 37, 57–59]. The cumulative data
from these studies show that only two out of the 72
autoantibody-positive subjects showed diabetes-related histo-
pathological changes [37]. In both subjects, <10% of the islets
were affected with insulitis; occasional pseudoatrophic islets
devoid of beta cells were seen and relative beta cell area was in
the normal to high normal range. Both cases presented with
multiple autoantibodies in combination with a susceptible
HLA-DQ genotype. Interestingly, one subject showed a con-
siderable level of beta cell replication that was limited to the T-
cell-infiltrated islets. Together, these results raise questions
about our current view of the natural history of the disease
and the time course of beta cell loss. They do not support a
model where autoantibody positivity is a surrogate marker for
extensive beta cell damage and a decreasing beta cell mass.

Insulitis is frequent in young patients

As outlined above, insulitis is only found in a relatively small
subset of diabetic patients. When the histopathological data
from all population-based studies are combined [7, 19, 23,
27, 29, 32, 38, 56, 60, 61], a total of 247 cases can be analysed
and stratified according to age at onset and duration of disease.
Insulitis was present in 19% of all cases. It wasmost prominent
in young patients (0–14 years) in the first year after diagnosis:
32 of the 47 patients (68 %) in this age group showed clear
insulitic lesions, albeit in often a small subset of islets. In
contrast, the lesion was rare in young patients with chronic
disease (>1 year), where it was only found in 4 % of cases
(Table 1). The study by Foulis [24] was not included in this
meta-analysis as the paper does not give clinical data on the
insulitis-negative patients. However, the overall outcome of
this study, with 39/45 of young patients with a disease duration

of <1 year (87 %) having insulitis, is in line with the current
analysis. Interestingly, insulitis was less frequently found in
older individuals (15–39 years), where only 29 % of patients
displayed insulitic lesions in the first year after diagnosis. The
relatively low frequency in (young) adults is of interest, as it
might indicate a different or less fulminant version of the
disease with a slower progression of beta cell loss [9, 62].

The 2013 consensus guideline for the diagnosis of insulitis

Early pathologists described insulitis as an islet-specific infil-
tration of a predominantly lymphocytic nature. They stressed
that the infiltrates were easy to miss in conventional stains and
that the lesion was probably underdiagnosed [20]. The advent
of immunohistochemistry allowed phenotyping of the infil-
trating cells and facilitated their quantification. However, no
consensus existed in the pathology community as to which
leucocyte marker should be used or how to distinguish
insulitis from background infiltration. Different thresholds of
2, 3, 4, 5, 6 or 15 CD3- or CD45-positive islet cells were used
by different authors to identify insulitis [7, 16, 21, 27, 29, 33,
37]. Recently, a JDRF-nPOD working group [63] defined the
consensus criteria for the diagnosis of classical insulitis:
‘Patients with insulitis are defined by the presence of a pre-
dominantly lymphocytic infiltration specifically targeting the
islets of Langerhans. The infiltrating cells may be found in the
islet periphery (peri-insulitis), often showing a characteristic
tight focal aggregation at one pole of the islet that is in direct
contact with the peripheral islet cells. The infiltrate may also
be diffuse and present throughout the islet parenchyma (intra-
insulitis). The lesion mainly affects islets containing insulin-
positive cells and is always accompanied by the presence of
(pseudo)atrophic islets devoid of beta cells. The fraction of
infiltrated islets is generally low (<10 % of islet profiles). The
lesion should be established in a minimum of three islets, with
a threshold level of ≥15 CD45+ cells/islet before the diagnosis
can be made’.

Normal islets are frequent after clinical onset

The pancreas of most recent-onset T1D patients still contains
a sizeable number of insulin-positive islets: in young patients
(0–14 years), approximately 38% of islets are insulin-positive
up to 1 year after diagnosis. In young adults (15–39 years),
this fraction is higher with 56% of islets being insulin positive
(Table 2). These relatively high levels of residual beta cells
contrast with the situation >1 year after diagnosis, where the
fraction of insulin-positive islets is down to 13 %. Although
these data refer to insulin-positivity at the islet level, and not to
absolute beta cell mass, they do support the notion that an
important residual number of beta cells are present in the first
year after diagnosis. This residual beta cell mass appears to be
most pronounced in individuals that develop the disease above

Table 1 Fraction of T1D patients with insulitis stratified according to age
at onset and duration of disease

Duration of disease

Age at onset (years) ≤1 year >1 year Total

0–14 32/47 (68) 4/103 (4) 36/150 (24)

15–39 10/35** (29) 2/62 ns (3) 12/97* (12)

Total 42/82 (51) 6/165 (4) 48/247 (19)

Data are expressed as number of patients with insulitis versus total
number in group (percentage). Combined patient data from population-
based studies [7, 19, 23, 27, 29, 32, 38, 56, 60, 61].

ns non-significant

*p<0.01; **p<0.05, significance of differences versus the age group 0–
14 years was calculated using a chi-square test
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age 14 and supports the view that the disease is less fulminant
in older individuals. The quantitative analysis is supported by
histopathological observations in recent-onset cases, where
normal insulin-containing islets, free from insulitic infiltra-
tion, were reported to be relatively frequent [19, 40, 42]. It is
also in line with an analysis of recent-onset patients, where
clamp-derived second phase C-peptide release was 10–40 %
of that of healthy controls [15, 56]. A recent study into the
evolution of beta cell function in 948 autoantibody-positive
patients <20 years who were followed a median period of
8 months after diagnosis showed a progressive decline of 4 %
per month independent of age, genetic susceptibility or BMI
[64]. A similar study in a demographically more heteroge-
neous population showed that 93 % of patients remained C-
peptide positive during the 2 years follow-up period [65].
Together, these data point to a situation where many recent-
onset patients have a substantial beta cell mass at diagnosis,
and that this mass is decreasing relatively slowly in themonths
and years thereafter. The initial months after diagnosis there-
fore form a clear window of opportunity for studies aiming to
halt or slow beta cell loss. Limiting the loss is important, as
even a modest residual beta cell function will strongly benefit
the patient from a clinical point of view.

Why many islets in recent-onset patients escape immune
destruction while others become pseudoatrophic is not clear.
One aspect that warrants careful analysis is the observation in
several patients that the disease appears to be (multi) focal,
with insulitis and pseudoatrophic islets only found in some
‘lobules’ of the gland, but not in others. It can be speculated
that this is due to the anatomical structure of the gland with its
multiple lobes, differences in ontogeny between ventrally
derived and dorsally derived parts of the gland, structure of
the ductal tree, innervation and vasculature [6].

Beta cells persist in patients with chronic T1D

Patients with chronic (>1 year) T1D show a variable number
of residual beta cells. Immunohistochemistry shows that on

average 13 % of islets still contain insulin (Table 2). The
remaining islets are pseudoatrophic and consist mainly of
alpha cells (A cells), in addition to somatostatin-containg cells
(D cells). In islets in the ventrally derived pancreatic lobe, the
pseudoatrophic islets are mainly composed of pancreatic poly-
peptide positive cells (PP cells) in addition to D cells.

The diffuse nature of the endocrine pancreas, the heteroge-
neous ontogenic origin of pancreatic lobes and differences in
islet composition and the focal distribution of insulitis require
that extensive sampling is carried out to evaluate residual beta
cell mass in patients. Very few studies have systematically
sampled the whole pancreas in order to arrive at a morpho-
metric assessment of absolute beta cell mass: one study on
four T1D patients with a disease duration of 1–34 years
showed a virtual disappearance of beta cells, with mean beta
cell mass going from 800 to 900 mg in controls to virtually
undetectable levels (<20 mg) in chronic T1D patients, but
with no changes in the absolute A, D and PP cell mass [66].
A second study on two T1D patients with a disease duration of
3 and 20 years, respectively, showed a virtual absence of beta
cells in the first case and a reduction to a level of 25 % of the
lowest normal control in the second patient [67]. A more
qualitative study of 26 T1D patients with disease duration
between 2 and 54 years showed residual beta cells in 50 %
of the cases. Interestingly, these cells were often found to be
focally distributed and present in only a limited number of
lobules. No significant relation was found between the age of
onset of T1D and the presence of residual insulin positivity
[68].

Several subsequent studies have confirmed the presence of
residual beta cells in chronic T1D patients, even up to 84 years
after diagnosis [69]. The percentage of cases with residual
beta cells was estimated to be between 50 and 100 % [29,
68–70]. When only childhood (≤18 years) onset cases were
included, residual beta cells were found in 6/20 chronic T1D
cases [33]. The patients with residual beta cells presented with
two different types of beta cell localization: in pattern A,
patients showed a mixture of both insulin-deficient and
insulin-containing islets, with the latter showing a clustered
distribution in specific lobules of the gland. In pattern B, all
islets were still insulin-containing and no insulin-deficient
islets were present. A similar lobular distribution of insulin-
containing islets was also observed in recent-onset patients,
where insulin-containing hyperplastic islets showing insulitis
were found in a limited number of pancreatic lobules, while
the remainder of the gland contained only insulin-negative
islets without leucocytic infiltration [19].

Patients with chronic T1D show evidence of sustained beta
cell apoptosis [65, 66], possibly suggesting that in patients
with chronic T1D there is a continuous formation of new beta
cells and that these cells subsequently go into apoptosis due to
recurrent autoimmunity or other causes. The statement in one
of the early papers [68] on residual beta cells in chronic T1D

Table 2 Percent islets with residual beta cells in T1D stratified according
to age at onset and duration of disease

Duration of disease

Age at onset (years) ≤1 year >1 year Total

0–14 37.9±4.1 (43) 13.5±6.5* (13) 32.3±3.7 (56)

15–39 56.4±7.5 (11) 13.6 (1) 52.9±7.7 (12)

Total 41.7±3.7 (54) 13.5±5.5* (14) 35.9±3.4 (68)

Data are expressed as the percent of islets that contain insulin positivity
(±SEM) as measured in (n) patients. Combined patient data from Refs.
[24, 32]

*p<0.01, significance of differences versus the group with ≤1 year dura-
tion was calculated using a non-parametric Mann Whitney test
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patients that ‘most patients whose pancreata still contain in-
sulin cells after a diabetes duration of 10 to 20 years, will
retain these insulin cells for the rest of their lives’ should
therefore perhaps be modified to allow for the possibility that
the residual beta cells are in fact newly formed cells that have
escaped apoptosis.

Insulitis in the NOD mouse

The NOD mouse model was developed more than 30 years
ago by Makino and Tochino while searching for a cataract-
prone sub-line [71]. The strain is characterized by a high
incidence of diabetes in females (approximately 80 %
diabetic at week 25) and a more slowly developing phenotype
in males with a lower overall incidence of diabetes [72].
Diabetogenesis is caused by multiple immunodeficiencies
under polygenic control with strong environmental influences
that (negatively) affect disease penetration. In addition to
diabetes, the NOD mouse is prone to develop other autoim-
mune diseases including sialadenitis and thyroiditis. Older
animals develop neoplasms, including lymphomas [73].
Genetic studies have indicated that diabetes susceptibility in
the NOD mouse is linked to more than 30 different loci on 15
chromosomes [74].

Stages of diabetes development in the NOD mouse

The pathogenesis and histopathology of the lesions in the
female NOD islets of Langerhans can be arbitrarily divided
into four stages (Table 3):

Stage 1: early infiltration (4–7 weeks)

In the NOD mouse, insulitis develops gradually, with discrete
appearance of low numbers of intra-islet CD4 T-lymphocytes
and their co-localization with CD11c + islet antigen present-
ing cells (APCs) in approximately 10 % of islets at week 4
[75]. It has been suggested in some studies that this phase is
preceded by myeloid cells infiltrating the NOD mouse islet
[76], while others stress that such cells are normally present in
all mouse strains, independent of disease susceptibility. At
week 6, approximately 30 % of islets show low level of

CD4+ cell infiltration, with a median number of three cells
per islet (range 1 to 55 cells per whole islet). Low numbers of
CD8+ cells and B lymphocytes are present. Blood vessels
inside the islet show increased ICAM-1 expression, and ap-
proximately 10 % show VCAM-1 expression. IgG deposits
are found on beta cells. Gene expression profiles suggest
upregulation of immune response genes, including type I
interferon-inducible genes [75].

Stage 2: development of inflammation (8–11 weeks)

At week 8, T-cell activation markers are present and the islet
gene expression pattern is changed. The total number of
leucocytes increases seven-fold from 2.7 to 18 % of islet cells
as determined by FACS in dissociated islets [75]. There is
infiltration of 50–60 % of islets with all major inflammatory
cell types, including CD4, CD8 and CD11c cells and in some
islets B cells. The infiltrating cells are preferentially located in
the islet periphery and are sometimes focal at one pole of the
islet periphery. Infiltration is not homogeneously distributed
throughout the gland, but appears to be localized, with some
pancreatic areas being affected and others not [77]. Islets show
an increased endothelial expression of ICAM-1 and VCAM-1
[75]. Beta cells show increased expression of MHC class I
[78]. Sizeable focal accumulations of CD3+ lymphocytes are
being formed, most of which are in close contact to islet tissue.
Part of these clusters (15 % at week 8, increasing to 81 % at
week 20) resemble tertiary lymphoid organs (TLO), with
separated T- and B-cell compartments, specialized vasculature
including lymphatic vessels and high endothelial venules. The
T-cell zone usually lies closest to the islet and is capped by a
more distal B-cell zone. TLOs have been described in many
chronic inflammatory diseases (but not human diabetes) and
are thought to play a role in disease progression [77, 79–81].
Total beta cell volume in the NOD pancreas does not change
significantly between 6 and 12 weeks of age [77], indicating
that the predominantly peri-insulitis at this stage is of a non-
destructive nature.

Stage 3: cytotoxicity develops (12–18 weeks)

Between weeks 12 and 18, there is a shift towards a
cytotoxicity-related gene expression pattern together with an
overall increase in the number of infiltrating cells [75]. At
week 17, 58 % of islets are found to show peri-insulitis with a
mixture of lymphocytes and monocyte-derived cells
completely surrounding the islet and 5 % of islets showing
intra-insulitis, associated with the erosion of beta cells mass
and with only some residual beta cells remaining. At week 18,
all islets are affected by infiltrates, with CD45+ cells forming
approximately 40 % of the islet cells. Total beta cell mass
gradually decreases, with a 42 % reduction at week 13 and a

Table 3 Pathogenesis of diabetes in female NOD mice

Age (weeks) Events

Stage 1 4–7 Early infiltration

Stage 2 8–11 Development of inflammation

Stage 3 12–18 Development of cytotoxicity

Stage 4 >18 Clinical diabetes
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73 % reduction at week 18 versus age-matched animals of a
related control strain [77, 82].

Stage 4: clinical diabetes (>18 weeks)

Despite a prolonged inflammatory phase starting at week 8,
most female mice only become diabetic after weeks 18–20
[54]. At clinical onset, total beta cell volume is decreased to
approximately 2.7109 μm3, which is a 86 % decrease com-
pared to that found in 16-week-old diabetes-resistant control
mice [2]. In diabetic animals, the pseudoatrophic islets are
devoid of beta cells and are free of inflammatory infiltrates.

Comparing insulitis in human disease with the NOD
mouse model

The histopathology of insulitis in the NOD mouse is different
from that in patients

When insulitis in recent-onset human T1D is compared to the
lesions found in the NOD mouse, some major differences can
be observed (Table 4). The human disease is characterized by
a relatively mild infiltration (Fig. 1a) that only affects a small
fraction of the islets. Quantification of the infiltrates [75]
shows an average of 25–30 CD8+ T cells per islet section,
which is one or more orders of magnitude lower than the
massive infiltration observed in the NOD mouse (Fig. 1b).
In the mouse model, the infiltration starts with a peri-islet
accumulation of CD3+ T cells, often encompassing the whole
islet and increasingly showing the spatial organisation of a
tertiary lymphoid organ. Neither islet encompassing peri-
insulitis nor TLOs have been described in the literature for
the human disease. A fourthmajor difference between insulitis
in T1D patients and NOD mice is the fraction of islets that is
affected. In 18 week-old, female NOD mice virtually all islets
are affected by a marked lymphocytic infiltration. Information

on the histopathology of patients in a preclinical phase of the
disease is limited, as only a small number of autoantibody-
positive non-diabetic cases with insulitis have been described
[37]. In these cases, inflammation was limited to <10 % of
islets. This is similar to the situation in a group of 54
young recent-onset patients (<1 year duration), where
insulitis was present in an average of 9 % of all islets
(range 0–35 %). When only islets were analysed that still
contained beta cells, an average of 32 % of such islets showed
insulitis [24, 32].

Immunophenotyping of insulitis shows similarities

Having stressed the morphological differences, it is also im-
portant to highlight some of the (immunological) similarities:
insulitis in both species contain a high fraction of T cells,
especially of the CD8 type, in addition to macrophages and
B lymphocytes. The specificities of the autoreactive islet-
infiltrating CD8 cells in both species include insulin and
IGRP epitopes [74]. The infiltrates in the NOD start at
4–7 weeks, shortly before the female becomes fertile
around 8 weeks of age, they become diabetic some
10–20 weeks later. In patients, diabetes incidence peaks
around puberty, thus appearing to predate the disease in the
NOD to a minor degree. Both show insulitis most prominently

Table 4 Comparing insulitis in female NOD mice and patients

Histopathological characteristics Human NOD

Insulitis present at onset Yes, low level Yes, massive

Infiltrate predominantly T cells Yes Yes

Infiltrate contains autoreactive
CD8+ T cells

Yes Yes

Beta cell mass reduced at diagnosis
(% of normal)

20–30 % 10–20 %

Massive encircling peri-insulitis prior
to and at onset.

No Yes

Peri-insulitis with tertiary lymphoid
organs present at onset

No Yes

HLA class I hyperexpression Yes Yes

Fig. 1 a. Insulitis in a patient with T1D showing infiltrating CD45+
leucocytes (red) in an insulin-positive islet of Langerhans (green) (×600).
b. Insulitis in a 20-week-old female NOD mouse showing infiltrating
CD3+ T cells in an insulin-positive islet (green) (×300)
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in the beta cell containing islets, while pseudoatrophic islets
are virtually devoid of infiltrating cells. Both also show a
marked overexpression of class I MHC in endocrine cells
[78]. In patients, MHC class I hyperexpression was prominent
in recent-onset cases [29, 32] and was also found in
pseudoatrophic islets devoid of insulin positivity [29].

Early stages of insulitis are associated with beta cell
replication

Observations in the NOD mouse pancreas support a model in
which inflammatory infiltration stimulates replication. Beta
cell replication was found to increase in pre-diabetic mice
[82] and after adoptive transfer of diabetogenic spleen cells
[83]. The increase in replication was found to precede a
significant decline in beta cell mass and coincides with the
early phase of insulitis, suggesting that inflammation
associated cytokines may mediate the effect. Recent studies
in NOD.RAG1−/− mice transferred with total diabetic
splenocytes reported a linear correlation between the islets
manifesting insulitis and beta cell proliferation [84], although
this somewhat contrasts with early observations that mitotic
figures in islet beta cells are preferentially found in islets that
are not yet affected by insulitis [85]. Some of the observations
found in the NOD mouse may also be present in patient
material: a 59-year-old autoantibody-positive organ donor
without a clinical history of diabetes, but with a susceptible
HLA-DQ genotype and positivity for four different autoanti-
bodies, showed a marked Ki67-positivity in islets with ongo-
ing insulitis [37]. The replication marker localized with both
insulin and glucagon positivity, suggesting that the inflamma-
tory environment was stimulating replication of all islet cell
types. Similar findings were reported for autoantibody-
negative organ donors where organs with a high level of
diffuse pancreatic leucocytic infiltration were also found to
present with high levels of islet cell replication [86]. Increased
levels of replication were also found in ten patients with
recent-onset T1D [87], but could not be confirmed in another
cohort of nine recent-onset patients who died of ketoacidosis
[27].

Conclusion

From a histopathological point of view, the insulitic lesions in
the islet of Langerhans of recent-onset T1D patients are very
different from those observed in the NOD mouse. In the
animal model, the infiltrate is massive, affects all islets and
has a clear peri-islet phase that precedes the development of
beta cell cytotoxicity. None of these characteristics are ob-
served in patients, where the infiltration is relatively subtle in
terms of the numbers of infiltrating cells, is only observed in
part of the islets and is not observed in all cases. Arguably, the

disease in the NOD mouse also has many pathogenetic ele-
ments in common with the human disease: the genetic predis-
position, polygenic trait and contribution of the MHC-loci,
together with a strong environmental influence, are well
known in both patients and NOD mice. Importantly, both
appear to share a common effector mechanism, with CD8+
T-cell autoreactivity against known beta cell components.
However, in view of our limited data on the human disease,
care should be taken when using the observations in an
autoimmune rodent model that resembles some, but not all,
aspects of T1D, to make predictions and devise immune
therapies in patients. A recent thoughtful review [88] listed
the arguments pro- and contra the assertion that human T1D is
a T-cell-mediated autoimmune disease. The authors argue
‘that the presence of T cells in or around islets is not a general
finding in T1D; that the process of tissue injury in T1D is not
as specific as would be expected for a T-cell-mediated auto-
immune disease and that the progression of T1D is generally
slow and the loss of beta cells is heterogeneous throughout the
pancreas, contradictory to what would be expected if the
disease was mediated by a T-cell response against islet anti-
gens’, instead they offer an alternative hypothesis that an
influx of different bacterial species from the duodenum via
the papilla of Vater into the pancreatic ductal tree leads to the
activation of ductal epithelial cells and islet cells, innate
periductal inflammation, loss of exocrine parenchyma and
periductal fibrosis. The periductal inflammation would be
particularly harmful to the beta cells due to their low protec-
tion against NO, ROS and proinflammatory cytokines. The
lobular nature of such a (repeated) innate inflammatory pro-
cess could explain the heterogeneous nature of the disease in
different pancreatic lobes [89]. Similarly, others have argued
in favour of a viral aetiology of the disease with many differ-
ent types of viruses, including rubella virus, cytomegaloviris,
mumps virus and enterovirus linked to the development of
T1D [90]. The most striking case being that of a 10-year-old
boy who developed T1D and where coxsackie B4 virus was
isolated from the pancreas and used to inoculate mice leading
to insulitis and beta cell death in these animals [53].

The pioneer of islet histopathology, Philip Lecompte, pro-
posed four explanations for his 1958 observation of insulitis in
children [20], namely a direct invasion of the islets by an
infectious agent, a manifestation of functional overstimulation
or strain, a reaction to damage by some unknown nonbacterial
agent and antigen-antibody reaction. We should conclude
that these different explanations are all still relevant today
and that the discussion about the aetiology of the disease is
still open.
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