92 research outputs found

    The humoral response to Plasmodium falciparum VarO rosetting variant and its association with protection against malaria in Beninese children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The capacity of <it>Plasmodium falciparum</it>-infected erythrocytes to bind uninfected erythrocytes (rosetting) is associated with severe malaria in African children. Rosetting is mediated by a subset of the variant surface antigens PfEMP1 targeted by protective antibody responses. Analysis of the response to rosette-forming parasites and their PfEMP1 adhesive domains is essential for understanding the acquisition of protection against severe malaria. To this end, the antibody response to a rosetting variant was analysed in children recruited with severe or uncomplicated malaria or asymptomatic <it>P. falciparum </it>infection.</p> <p>Methods</p> <p>Serum was collected from Beninese children with severe malaria, uncomplicated malaria or <it>P. falciparum </it>asymptomatic infection (N = 65, 37 and 52, respectively) and from immune adults (N = 30) living in the area. Infected erythrocyte surface-reactive IgG, rosette disrupting antibodies and IgG to the parasite crude extract were analysed using the single variant Palo Alto VarO-infected line. IgG, IgG1 and IgG3 to PfEMP1-varO-derived NTS-DBL1α<sub>1</sub>, CIDRγ and DBL2βC2 recombinant domains were analysed by ELISA. Antibody responses were compared in the clinical groups. Stability of the response was studied using a blood sampling collected 14 months later from asymptomatic children.</p> <p>Results</p> <p>Seroprevalence of erythrocyte surface-reactive IgG was high in adults (100%) and asymptomatic children (92.3%) but low in children with severe or uncomplicated malaria (26.1% and 37.8%, respectively). The IgG, IgG1 and IgG3 antibody responses to the varO-derived PfEMP1 domains were significantly higher in asymptomatic children than in children with clinical malaria in a multivariate analysis correcting for age and parasite density at enrolment. They were essentially stable, although levels tended to decrease with time. VarO-surface reactivity correlated positively with IgG reactivity to the rosetting domain varO-NTS-DBL1α<sub>1</sub>. None of the children sera, including those with surface-reactive antibodies possessed anti-VarO-rosetting activity, and few adults had rosette-disrupting antibodies.</p> <p>Conclusions</p> <p>Children with severe and uncomplicated malaria had similar responses. The higher prevalence and level of VarO-reactive antibodies in asymptomatic children compared to children with malaria is consistent with a protective role for anti-VarO antibodies against clinical falciparum malaria. The mechanism of such protection seems independent of rosette-disruption, suggesting that the cytophilic properties of antibodies come into play.</p

    CyProQuant-PCR: a real time RT-PCR technique for profiling human cytokines, based on external RNA standards, readily automatable for clinical use

    Get PDF
    BACKGROUND: Real-time PCR is becoming a common tool for detecting and quantifying expression profiling of selected genes. Cytokines mRNA quantification is widely used in immunological research to dissect the early steps of immune responses or pathophysiological pathways. It is also growing to be of clinical relevancy to immuno-monitoring and evaluation of the disease status of patients. The techniques currently used for "absolute quantification" of cytokine mRNA are based on a DNA standard curve and do not take into account the critical impact of RT efficiency. RESULTS: To overcome this pitfall, we designed a strategy using external RNA as standard in the RT-PCR. Use of synthetic RNA standards, by comparison with the corresponding DNA standard, showed significant variations in the yield of retro-transcription depending the target amplified and the experiment. We then developed primers to be used under one single experimental condition for the specific amplification of human IL-1β, IL-4, IL-10, IL-12p40, IL-13, IL-15, IL-18, IFN-γ, MIF, TGF-β1 and TNF-α mRNA. We showed that the beta-2 microglobulin (β2-MG) gene was suitable for data normalisation since the level of β2-MG transcripts in naïve PBMC varied less than 5 times between individuals and was not affected by LPS or PHA stimulation. The technique, we named CyProQuant-PCR (Cytokine Profiling Quantitative PCR) was validated using a kinetic measurement of cytokine transcripts under in vitro stimulation of human PBMC by lipopolysaccharide (LPS) or Staphylococcus aureus strain Cowan (SAC). Results obtained show that CyProQuant-PCR is powerful enough to precociously detect slight cytokine induction. Finally, having demonstrated the reproducibility of the method, it was applied to malaria patients and asymptomatic controls for the quantification of TGF-β1 transcripts and showed an increased capacity of cells from malaria patients to accumulate TGF-β1 mRNA in response to LPS. CONCLUSION: The real-time RT-PCR technique based on a RNA standard curve, CyProQuant-PCR, outlined here, allows for a genuine absolute quantification and a simultaneous analysis of a large panel of human cytokine mRNA. It represents a potent and attractive tool for immunomonitoring, lending itself readily to automation and with a high throughput. This opens the possibility of an easy and reliable cytokine profiling for clinical applications

    Kankanet : an artificial neural network-based object detection smartphone application and mobile microscope as a point-of-care diagnostic aid for soil-transmitted helminthiases

    Get PDF
    Endemic areas for soil-transmitted helminthiases often lack the tools and trained personnel necessary for point-of-care diagnosis. This study pilots the use of smartphone microscopy and an artificial neural network-based object detection application named Kankanet to address those two needs.; A smartphone was equipped with a USB Video Class (UVC) microscope attachment and Kankanet, which was trained to recognize eggs of Ascaris lumbricoides, Trichuris trichiura, and hookworm using a dataset of 2,078 images. It was evaluated for interpretive accuracy based on 185 new images. Fecal samples were processed using Kato-Katz (KK), spontaneous sedimentation technique in tube (SSTT), and Merthiolate-Iodine-Formaldehyde (MIF) techniques. UVC imaging and ANN interpretation of these slides was compared to parasitologist interpretation of standard microscopy.Relative to a gold standard defined as any positive result from parasitologist reading of KK, SSTT, and MIF preparations through standard microscopy, parasitologists reading UVC imaging of SSTT achieved a comparable sensitivity (82.9%) and specificity (97.1%) in A. lumbricoides to standard KK interpretation (97.0% sensitivity, 96.0% specificity). The UVC could not accurately image T. trichiura or hookworm. Though Kankanet interpretation was not quite as sensitive as parasitologist interpretation, it still achieved high sensitivity for A. lumbricoides and hookworm (69.6% and 71.4%, respectively). Kankanet showed high sensitivity for T. trichiura in microscope images (100.0%), but low in UVC images (50.0%).; The UVC achieved comparable sensitivity to standard microscopy with only A. lumbricoides. With further improvement of image resolution and magnification, UVC shows promise as a point-of-care imaging tool. In addition to smartphone microscopy, ANN-based object detection can be developed as a diagnostic aid. Though trained with a limited dataset, Kankanet accurately interprets both standard microscope and low-quality UVC images. Kankanet may achieve sensitivity comparable to parasitologists with continued expansion of the image database and improvement of machine learning technology

    Investigating the Host Binding Signature on the Plasmodium falciparum PfEMP1 Protein Family

    Get PDF
    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family plays a central role in antigenic variation and cytoadhesion of P. falciparum infected erythrocytes. PfEMP1 proteins/var genes are classified into three main subfamilies (UpsA, UpsB, and UpsC) that are hypothesized to have different roles in binding and disease. To investigate whether these subfamilies have diverged in binding specificity and test if binding could be predicted by adhesion domain classification, we generated a panel of 19 parasite lines that primarily expressed a single dominant var transcript and assayed binding against 12 known host receptors. By limited dilution cloning, only UpsB and UpsC var genes were isolated, indicating that UpsA var gene expression is rare under in vitro culture conditions. Consequently, three UpsA variants were obtained by rosette purification and selection with specific monoclonal antibodies to create a more representative panel. Binding assays showed that CD36 was the most common adhesion partner of the parasite panel, followed by ICAM-1 and TSP-1, and that CD36 and ICAM-1 binding variants were highly predicted by adhesion domain sequence classification. Binding to other host receptors, including CSA, VCAM-1, HABP1, CD31/PECAM, E-selectin, Endoglin, CHO receptor “X”, and Fractalkine, was rare or absent. Our findings identify a category of larger PfEMP1 proteins that are under dual selection for ICAM-1 and CD36 binding. They also support that the UpsA group, in contrast to UpsB and UpsC var genes, has diverged from binding to the major microvasculature receptor CD36 and likely uses other mechanisms to sequester in the microvasculature. These results demonstrate that CD36 and ICAM-1 have left strong signatures of selection on the PfEMP1 family that can be detected by adhesion domain sequence classification and have implications for how this family of proteins is specializing to exploit hosts with varying levels of anti-malaria immunity

    Allelic Diversity of the Plasmodium falciparum Erythrocyte Membrane Protein 1 Entails Variant-Specific Red Cell Surface Epitopes

    Get PDF
    The clonally variant Plasmodium falciparum PfEMP1 adhesin is a virulence factor and a prime target of humoral immunity. It is encoded by a repertoire of functionally differentiated var genes, which display architectural diversity and allelic polymorphism. Their serological relationship is key to understanding the evolutionary constraints on this gene family and rational vaccine design. Here, we investigated the Palo Alto/VarO and IT4/R29 and 3D7/PF13_003 parasites lines. VarO and R29 form rosettes with uninfected erythrocytes, a phenotype associated with severe malaria. They express an allelic Cys2/group A NTS-DBL1α1 PfEMP1 domain implicated in rosetting, whose 3D7 ortholog is encoded by PF13_0003. Using these three recombinant NTS-DBL1α1 domains, we elicited antibodies in mice that were used to develop monovariant cultures by panning selection. The 3D7/PF13_0003 parasites formed rosettes, revealing a correlation between sequence identity and virulence phenotype. The antibodies cross-reacted with the allelic domains in ELISA but only minimally with the Cys4/group B/C PFL1955w NTS-DBL1α. By contrast, they were variant-specific in surface seroreactivity of the monovariant-infected red cells by FACS analysis and in rosette-disruption assays. Thus, while ELISA can differentiate serogroups, surface reactivity assays define the more restrictive serotypes. Irrespective of cumulated exposure to infection, antibodies acquired by humans living in a malaria-endemic area also displayed a variant-specific surface reactivity. Although seroprevalence exceeded 90% for each rosetting line, the kinetics of acquistion of surface-reactive antibodies differed in the younger age groups. These data indicate that humans acquire an antibody repertoire to non-overlapping serotypes within a serogroup, consistent with an antibody-driven diversification pressure at the population level. In addition, the data provide important information for vaccine design, as production of a vaccine targeting rosetting PfEMP1 adhesins will require engineering to induce variant-transcending responses or combining multiple serotypes to elicit a broad spectrum of immunity

    La formation de rosettes chez Plasmodium falciparum : un phénotype complexe de cytoadhérence

    No full text
    International audienceThe capacity of Plasmodium falciparum-infected red blood cells to bind uninfected red blood cells (“rosetting”) has been associated with high parasite density in numerous geographic areas and with severe malaria in African children. We summarize here the associations that have emerged from field studies and describe the various experimental models of rosetting that have been developed. A variety of erythrocyte receptors, several serum factors and a number of rosette-mediating PfEMP1 adhesins have been identified. Several var genes code for rosette-forming PfEMP1 adhesins in each P. falciparum genome, so that each clonal line has the capacity to generate distinct types of rosettes. To clarify their respective role in malaria pathogenesis, each of the multiple ligand/receptor interactions should be further studied for fine specificity, binding affinity and the impact of the large population polymorphism of the parasite variant repertoires should be assessed. Interestingly, some major human erythrocyte surface polymorphisms have been identified as affecting rosette formation, consistent with a role for rosetting in life-threatening falciparum malaria.La capacité qu’ont les globules rouges infectés par Plasmodium falciparum de se lier aux globules rouges non infectés (rosetting) a été associée à la présence de densités parasitaires élevées dans toutes les zones géographiques et aux formes graves de paludisme chez l’enfant africain. Nous résumons ici ces données et décrivons les divers modèles expérimentaux disponibles à l’heure actuelle. Plusieurs récepteurs érythrocytaires, des facteurs sériques et plusieurs adhésines PfEMP1 ont été identifiés comme intervenant dans le rosetting. Chaque génome de P. falciparum possède plusieurs adhésines PfEMP1 susceptibles de former des rosettes ; de ce fait, chaque lignée clonale peut produire plusieurs différents types de rosettes. Pour clarifier leur rôle respectif dans la pathogénèse palustre, il faut étudier chacune de ces interactions ligand–récepteur pour sa spécificité fine et ses paramètres d’affinité et analyser l’impact de l’important polymorphisme parasitaire en zone d’endémie. De façon intéressante, quelques-uns des polymorphismes majeurs de la surface érythrocytaire ont été associés avec des récepteurs du rosetting, suggérant que le rosetting contribue de fait aux pressions sélectives du paludisme pernicieux

    Evidence of Insecticide Resistance to Pyrethroids and Bendiocarb in Anopheles funestus from Tsararano, Marovoay District, Madagascar

    No full text
    Introduction. In Madagascar, malaria control relies on the countrywide use of long lasting insecticide treated bed nets (LLINs) and on indoor residual spraying (IRS) in the central highland area as well as a small area on the eastern coast. We tested insecticide resistance mechanisms of Anopheles funestus from Tsararano, a malaria endemic village in the coastal health district of Marovoay. Methods. Insecticide susceptibility bioassays were done in July 2017 on first-generation Anopheles funestus (F1) to assess (i) the susceptibility to permethrin (0.05%), deltamethrin (0.05%), DDT (4%), malathion (5%), fenitrothion (1%), and bendiocarb (0.1%); (ii) the effect of preexposure to the piperonyl butoxide (PBO) synergist; and (iii) the enzymatic activities of cytochrome P450, esterases, and glutathione S-transferases (GST). Results. Our results demonstrated that An. funestus was phenotypically resistant to pyrethroids and bendiocarb, with a mortality rate (MR) of 33.6% (95%CI: 24.5-43.7%) and 86% (95%CI: 77.6-92.1%), respectively. In contrast, An. funestus were 100% susceptible to DDT and organophosphates (malathion and fenitrothion). Preexposure of An. funestus to PBO synergist significantly restored the susceptibility to bendiocarb (MR=100%) and increased the MR in the pyrethroid group, from 96% (95%CI: 90.0-98.9%) to 100% for deltamethrin and permethrin, respectively (χ2 = 43, df = 3, P< 0.0001). Enzymatic activities of cytochrome P450 and α-esterases were significantly elevated among An. funestus compared with the IPM reference strain (Mann-Whitney U= 30, P<0.0001; U = 145.5, P <0.0001, respectively). No significant differences of β-esterases activities compared to the IPM reference strain were observed (Mann-Whitney U = 392.5, P = 0.08). Conclusion. In Tsararano, despite the absence of an IRS programme, there is evidence of high levels of insecticide resistance to pyrethroids and bendiocarb in An. funestus. Biochemical data indicated that a metabolic resistance mechanism through the cytochrome P450 genes is operating in the An. funestus population

    Standardization of a Multiplex Magnetic Bead-based for Simultaneous Detection of IgG to Plasmodium Antigens

    No full text
    International audienceBackground: Multiplex assays are currently used to facilitate the evaluation of antibody (Ab) responses to multiple Plasmodium falciparum antigens from large field-based epidemiological studies. The present study aimed at (i) optimizing parameters of a novel cost-effective, compact and reliable magnetic bead-based multiplex immunoassay (MBA) carried out with the MAGPIX ®-Luminex system and (ii) comparing the results with those obtained using standard ELISA technology. Methods: Several MBA parameters including antigen amount for coupling, plasma dilution, type of plates, buffers, washing procedure to minimize bead loss, and bead quantity for testing were optimized. Antibody responses to two recombinant and two peptidic P. falciparum antigens, one Anopheles gambiae salivary gland peptide gSG6 and Bovine Serum Albumin as negative control were tested by MBA and ELISA using sera from 14 villagers from an hyper-endemic Senegalese village. Results: The MBA procedures were developed to reflect responses observed in the standard ELISA protocols used in previous studies. Using the finalized MBA protocol, a strong significant positive correlation (P<10-3) was observed between ELISA and multiplex-MFI (median fluorescence intensity) antibody readouts (PfMSP1p19, PF13-DBL1α1 recombinant proteins, rho= .77 and .82, respectively; LSA141, CSP and gSG6, synthetic peptides; rho = .86, .61 and .73, respectively). Backgrounds with the negative control BSA or non-immune sera were minimal. There was a good reproducibility of MFI values measured with amounts of 1,500 beads/antigen/well. Conclusion: The MBA protocol offers important advantages over ELISA for measuring antibody responses to multiple Plasmodium antigens, especially in large field studies. Reducing significantly consumables' costs and being more rapid than ELISA, the MBA protocols developed here represents a basis for standardizing assays of humoral responses and enable valid comparisons of results from different laboratories in seroepidemiological surveys or analysis of immunogenicity of vaccine candidates

    Rosetting is associated with increased Plasmodium falciparum in vivo multiplication rate in the Saimiri sciureus monkey

    No full text
    International audienceSevere Plasmodium falciparum malaria in African children is associated with high peripheral parasite densities and high rate of rosette-forming parasites. To explore the relationship between rosette formation and parasite density in vivo, we compared the multiplication rate of a rosette-forming variant (varO) of the Palo Alto line with a sibling non-rosetting variant (varR) in splenectomized Saimiri monkeys. The multiplication rate of varO parasites was 1.5-fold higher than that of the varR variant. This indicates that rosetting is indeed associated with high parasite multiplication efficiency in vivo and, as such, may contribute to the high parasite densities observed in severe malaria
    • …
    corecore