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Abstract

Background

Endemic areas for soil-transmitted helminthiases often lack the tools and trained personnel

necessary for point-of-care diagnosis. This study pilots the use of smartphone microscopy

and an artificial neural network-based (ANN) object detection application named Kankanet

to address those two needs.

Methodology/Principal findings

A smartphone was equipped with a USB Video Class (UVC) microscope attachment and

Kankanet, which was trained to recognize eggs of Ascaris lumbricoides, Trichuris trichiura,

and hookworm using a dataset of 2,078 images. It was evaluated for interpretive accuracy

based on 185 new images. Fecal samples were processed using Kato-Katz (KK), spontane-

ous sedimentation technique in tube (SSTT), and Merthiolate-Iodine-Formaldehyde (MIF)

techniques. UVC imaging and ANN interpretation of these slides was compared to parasitol-

ogist interpretation of standard microscopy.Relative to a gold standard defined as any posi-

tive result from parasitologist reading of KK, SSTT, and MIF preparations through standard

microscopy, parasitologists reading UVC imaging of SSTT achieved a comparable sensitiv-

ity (82.9%) and specificity (97.1%) in A. lumbricoides to standard KK interpretation (97.0%

sensitivity, 96.0% specificity). The UVC could not accurately image T. trichiura or hook-

worm. Though Kankanet interpretation was not quite as sensitive as parasitologist
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interpretation, it still achieved high sensitivity for A. lumbricoides and hookworm (69.6% and

71.4%, respectively). Kankanet showed high sensitivity for T. trichiura in microscope images

(100.0%), but low in UVC images (50.0%).

Conclusions/Significance

The UVC achieved comparable sensitivity to standard microscopy with only A. lumbricoides.

With further improvement of image resolution and magnification, UVC shows promise as a

point-of-care imaging tool. In addition to smartphone microscopy, ANN-based object detec-

tion can be developed as a diagnostic aid. Though trained with a limited dataset, Kankanet

accurately interprets both standard microscope and low-quality UVC images. Kankanet

may achieve sensitivity comparable to parasitologists with continued expansion of the

image database and improvement of machine learning technology.

Author summary

For rainforest-enshrouded rural villages of Madagascar, soil-transmitted helminthiases

are more the rule than the exception. However, the microscopy equipment and lab techni-

cians needed for diagnosis are a distance of several days’ hike away. We piloted a solution

for these communities by leveraging resources the villages already had: a traveling team of

local health care workers, and their personal Android smartphones. We demonstrated

that an inexpensive, commercially available microscope attachment for smartphones

could rival the sensitivity and specificity of a regular microscope using standard field fecal

sample processing techniques. We also developed an artificial neural network-based

object detection Android application, called Kankanet, based on open-source program-

ming libraries. Kankanet was used to detect eggs of the three most common soil-transmit-

ted helminths: Ascaris lumbricoides, Trichuris trichiura, and hookworm. We found

Kankanet to be moderately sensitive and highly specific for both standard microscope

images and low-quality smartphone microscope images. This proof-of-concept study

demonstrates the diagnostic capabilities of artificial neural network-based object detection

systems. Since the programming frameworks used were all open-source and user-friendly

even for computer science laymen, artificial neural network-based object detection shows

strong potential for development of low-cost, high-impact diagnostic aids essential to

health care and field research in resource-limited communities.

Introduction

Soil-transmitted helminths (STH) such as Ascaris lumbricoides, hookworm, and Trichuris tri-
chiura affect more than a billion people worldwide [1–3]. However, due to lack of access to

fecal processing materials, diagnostic equipment, and trained personnel for diagnosis, the

mainstay of STH control remains mass administration of antihelminthic drugs [4]. To diag-

nose STH in residents of rural areas, the present standard is the Kato-Katz technique (esti-

mated sensitivity of 0.970 for A. lumbricoides, 0.650 for hookworm, and 0.910 for T. trichiura;

estimated specificity of 0.960 for A. lumbricoides, 0.940 for hookworm, and 0.940 for T. tri-
chiura) [5]. However, this method is time-sensitive due to rapid degeneration of hookworm

eggs [5]. Other methods, including fecal flotation through FLOTAC and mini-FLOTAC still

have higher sensitivity (0.440) than direct fecal examination (0.360), but require centrifugation
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equipment, which is expensive and difficult to transport [6]. Multiplex quantitative PCR analy-

sis for these three species is a high sensitivity and specificity technique (0.870–1.00 and 0.830–

1.00, respectively), but can only be performed with expensive laboratory equipment [7,8].

Spontaneous sedimentation technique in tube (SSTT) analysis has been found in preliminary

studies to be not inferior to Kato-Katz in A. lumbricoides, T. trichiura, and hookworm [9,10].

Since it requires no special equipment and few materials, it has the potential to be a cost-effec-

tive stool sample processing method in the field.

Mass drug administration campaigns are the prevailing strategy employed to control high

rates of STH. Such campaigns, however, are focused on treating children and do not necessar-

ily address the high infection prevalence rates of STH in adults, which in turn may contribute

to the high reinfection rates [11,12]. Technology that facilitates point-of-care diagnosis could

enable mass drug administration programs to screen adults for treatment, monitor program

efficacy, aid research, and map STH prevalence. In areas close to STH elimination, such a tool

could facilitate a test-and-treat model for STH control.

One avenue for point-of-care diagnostic equipment is smartphone microscopy. Numerous

papers have already demonstrated the viability of using smartphones [13–15] and smartphone-

compatible microscopy attachments (USB Video Class, or UVC) [16] as cheap point-of-care diag-

nostic tools. Studies have tried direct imaging, as with classical parasitological diagnosis [17], fluo-

rescent labeling [14], and digital image processing algorithms to aid diagnosis [18].

To address the need for trained parasitologists to make the STH diagnosis, this study investi-

gated artificial neural network-based technology (ANN). ANN, a framework from machine

learning, a subfield of artificial intelligence, has seen a rapid explosion in range of applications,

from object detection to speech recognition to translation. Rather than traditional software,

which relies on a set of human-written rules for image classification, a method explored in

other studies [19], ANN image processing stacks thousands of images together and uses back-

propagation, a recursive algorithm to create its own rules to classify images. A previous study

has applied ANN-based systems to diagnostic microscopy of STH with moderate sensitivity,

using a device of comparable price to a smartphone to image samples and applying a commer-

cially available artificial intelligence algorithm (Web Microscope) to classify the samples. How-

ever, such a device requires internet connection to function and was only validated on 13

samples [20,21]. Another study has created and patented an ANN-based system to identify T.

trichiura based on a small dataset of sample images (n<100) [22]. However, there is no prece-

dent in current literature for extensive (n>1,000) ANN-based object detection system training

for multiple STH species, nor use in smartphones, nor offline use (disconnected from the inter-

net), nor field testing in specimens. This study developed such a system, named Kankanet from

the English word network and the Malagasy word for intestinal worms, kankana. This study

also uses a smartphone-compatible mobile microscope, or UVC, with a simple X-Y slide stage.

As a proof-of-concept pilot study for ANN-assisted microscopy, this project aimed to

address two key obstacles to point-of-care diagnosis of STH in rural Madagascar: (1) the lack

of portable and inexpensive microscopy, and (2) the limited capacity and expertise to read

microscope images. This project evaluated the efficacy for diagnosis of three species of STH of

(1) a UVC and (2) Kankanet, an object-detection ANN-based system deployed through smart-

phone application.

Methods

Ethical considerations

This study was a part of a larger study on the "Assessment of Integrated Management for Intes-

tinal Parasites control: study of the impact of routine mass treatment of Helminthiasis and
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identification of risk areas of transmission in two villages in the district of Ifanadiana, Mada-

gascar". This study has received institutional review board approval from the Stony Brook Uni-

versity (ID: 874952–13) and the national ethics review board of Madagascar: Comité d’Éthique

de la Recherche Biomédicale Auprès du Ministère de la Santé Publique de Madagascar

(41-MSANP/CERBM, June 8, 2017). As a prospective study, data collection was planned

before any diagnostic test was performed. In accordance with cultural norms, consent was first

required from the local leaders before engaging in any activities within their purview. All par-

ticipants received oral information about the study in Malagasy; written informed consent was

obtained from adult participants or parents/legal guardians for the children.

Since this study was meant to evaluate diagnostic methods and did not produce definitive

results, no diagnostic results from this study were reported to the patients. All inhabitants of

the two study villages were given their annual dose of 400 mg albendazole one year before this

study, and received another 400 mg albendazole dose within a month of the conclusion of the

study by the national mass drug administration effort.

Data storage

A unique identifier was assigned to each participant to allow grouping of analysis data for each

patient. All data was stored on an encrypted server, to which only investigators had access.

Study area, study population, and subject recruitment

The two villages under study, Mangevo and Ambinanindranofotaka (geographic coordinates:

21˚27’S, 47˚25’E and 21˚28’S, 47˚24’E), are rural villages situated on the edge of Ranomafana

National Park, about 275 km south of Antananarivo, the capital of Madagascar. Over 95% of

households in Ambinanindranofotaka (total population, n = 327) and Mangevo (total popula-

tion, n = 238) engage in subsistence farming and animal husbandry. The villages, accessible

only by 14 hours’ worth of footpaths, are tucked between mountain ridges covered with sec-

ondary-growth rainforest. The study was conducted between 8 Jun 2018 and 18 Jun 2018.

All residents of each village were given a brief oral presentation about the public health

importance, symptoms and prevention of STH; subjects above age 16, the Madagascar cut-off

age for adulthood, who gave voluntary consent to participate in the study were given contain-

ers and gloves to collect their own fecal samples. Parents gave consent for their assenting chil-

dren and collected their fecal samples. One fecal sample from each participant was submitted

between the hours of sunrise and sunset. Samples were processed for analysis within 20 min-

utes of production by participant. Cognitively impaired subjects were excluded.

Fecal sample processing

Each fecal sample produced three slides for microscopic analysis: (1) one slide was prepared

according to Kato-Katz (KK) technique from fresh stool; (2) one slide was prepared according

to spontaneous sedimentation technique in tube (SSTT) from 10% formalin-preserved stool;

(3) one slide was prepared according to Merthiolate-Iodine-Formaldehyde (MIF) technique

from 10% formalin-preserved stool.

As a reference test, a modified gold standard was defined as any positive result (at least one

egg positively identified in a sample) from standard microscopy by trained parasitologists

using (1) KK, (2) SSTT, and (3) MIF techniques. Intensity of infection (measured by eggs/

gram) of A. lumbricoides, T. trichiura, and hookworm were obtained by standard microscopy

reading of KK slides by multiplying the egg count per slide reading by the standard coefficient

of 24. SSTT technique followed standard protocol [23]. This measure was defined to increase

the sensitivity of the reference test.

Artificial neural network and mobile microscopy for helminth diagnosis
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A standard Android smartphone was attached to a UVC (Magnification Endoscope, Jiusion

Tech; Digital Microscope Stand, iTez) for microscopic analysis of KK and SSTT slides in the

field (Fig 1). Clinical information or results from any other analyses of the fecal samples was

not made available to slide readers during their analysis.

Object detection ANN-based system training

TensorFlow is an open-source machine learning framework developed by Google Brain.

Using the TensorFlow repository, this study developed Kankanet, an ANN-based object detec-

tion system built upon a Single Shot Detection meta-architecture and a MobileNet feature

extractor, a convolutional neural network developed for mobile vision applications [24,25].

Based on a dataset of 2,078 images of STH eggs, Kankanet was trained to recognize three STH

species: A. lumbricoides, T. trichiura, and hookworm [26]. 597 egg pictures were taken by a

standard microscope and 1,481 were taken by UVC. The efficacy of Kankanet diagnosis was

evaluated with a separate dataset of 186 images with a comparable distribution of species and

imaging modalities. The detailed breakdown of the composition of these image sets is shown

in Table 1, which shows percentage distributions by species and imaging modality to show

concordance in image distribution between training set and evaluation set.

The following hyperparameters were used: initial learning rate = 0.004; decay

steps = 800720; decay factor = 0.95, according to the default configuration used to train open-

source models released online. To improve the robustness of the model, the dataset was aug-

mented using the default methods of random cropping and horizontal flipping. The loss rate

was monitored until it averaged less than 0.01, as shown in Fig 2, after which the model was

frozen in a format suitable for use in a mobile application. Based on this protocol, two models

were trained:

1. Model 1, trained with microscope images only (n = 597).

Fig 1. An Android smartphone mounted on a tripod connected to the UVC used in this study, which is mounted

in a microscope stand with X-Y stage.

https://doi.org/10.1371/journal.pntd.0007577.g001
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2. Model 2, trained with all microscope and UVC images (n = 2,078).

It took Model 1 around 81 and Model 2 around 12 epochs, or iterations through the entire

training dataset, to reach the loss rate of less than 0.01. These models were then validated by

being tested from randomly selected images from the evaluation image set (n = 185), images

that were not included in the training set. Once trained, these models analyze images in real

time, project a bounding-box over each detected object, and display the name of the object

detected, along with a confidence rating (Fig 3 and Fig 4).

The true readings of each image in the training and test image sets were determined by a

trained parasitologist. The Kankanet models then were used to read test set images, and cor-

rectly identified eggs were considered true positives, incorrect objects identified as eggs were

considered false positives, undetected eggs were considered false negatives, and images without

eggs or detected objects were considered true negatives. Evaluation of model sensitivity and

specificity was performed with the following test image sets:

1. UVC images (n = 124)

2. microscope images (n = 62)

3. both UVC and microscope images (n = 186)

Table 1. Distribution of images of A. lumbricoides, T. trichiura, and hookworm in each image dataset, taken with

each modality. The training set and evaluation set are composed of similar distributions of each species, with similar

breakdowns of imaging modality.

Training set % (n) Evaluation set % (n)

AL total 90.1% (1872/2078) 86.6% (161/186)

AL microscope 19.4% (404/2078) 23.1% (43/186)

AL UVC 70.6% (1468/2078) 63.4% (118/186)

TT total 4.8% (100/2078) 9.1% (17/186)

TT microscope 4.2% (87/2078) 5.9% (11/186)

TT UVC 0.6% (13/2078) 3.2% (6/186)

H total 5.1% (106/2078) 4.3% (8/186)

H microscope 5.1% (106/2078) 4.3% (8/186)

H UVC 0.0% (0/2078) 0.0% (0/186)

Total images 100.0% (2078) 100.0% (186)

Total microscope 28.7% (597/2078) 33.3% (62/186)

Total UVC 71.3% (1481/2078) 66.7% (124/186)

https://doi.org/10.1371/journal.pntd.0007577.t001

Fig 2. Loss as it evolved over the course of training Model 1 (blue) and Model 2 (orange).

https://doi.org/10.1371/journal.pntd.0007577.g002

Artificial neural network and mobile microscopy for helminth diagnosis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007577 August 5, 2019 6 / 16

https://doi.org/10.1371/journal.pntd.0007577.t001
https://doi.org/10.1371/journal.pntd.0007577.g002
https://doi.org/10.1371/journal.pntd.0007577


Android application development

The open-source TensorFlow library contains a demo Android application that includes an

object-detection module. Following the protocol for migrating this TensorFlow model to

Android [27], the original object detection model on the app was swapped out for the Kanka-

net model. As per the original app, the threshold for reporting detected objects was set at 0.60

confidence.

Data analysis

Intended sample size was calculated based on June 2016 prevalence rates in Ifanadiana, Mada-

gascar (n = 574): A. lumbricoides 71.3% (95% CI 67.7–75.1); T. trichiura 74.7% (95% CI 71.1–

78.2); hookworm 33.1% (95% CI 29.2–36.9) [28]. Following the calculations for a binary diag-

nostic test for the species with the lowest prevalence, hookworm, with a predicted sensitivity of

Fig 3. Detected A. lumbricoides egg using Model 1 on a standard microscope picture.

https://doi.org/10.1371/journal.pntd.0007577.g003

Fig 4. Detected A. lumbricoides eggs using Model 2 on a UVC picture.

https://doi.org/10.1371/journal.pntd.0007577.g004
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the test of 90% and a 10% margin of error, the required sample size to have adequate power

was determined to be 115. For A. lumbricoides and T. trichiura, which have higher prevalence

rates, a sample size of 115 gave sufficient power to support a sensitivity of 70% with a margin

of error of 10%. This study used a sample size of 113 fecal samples.

Readings from the UVC on KK and SSTT slides were compared against the modified gold

standard, which is defined as any positive result from a standard microscopy reading of KK,

SSTT, and MIF techniques by a parasitologist. In SPSS, sensitivity and specificity of the UVC

reading were calculated for each species with KK, SSTT, and combined analysis. Separate anal-

yses were calculated for different intensities of infection as classified according to WHO guide-

lines [4]. Cohen’s Kappa coefficient (K) was calculated for each type of fecal processing

method to determine comparability to the modified gold standard reading.

Results from Kankanet interpretation were compared to visual interpretation of the same

images by a trained parasitologist. The two models were evaluated for sensitivity, specificity,

positive predictive value, and negative predictive value using SPSS. There were no samples that

had missing results from any of the tests run.

Results

Gold standard readings and intensity of infection measurements

The number of positive samples identified by standard microscopy through the Kato-Katz,

MIF, and SSTT preparation methods are shown in Table 2, as well as the composite reading

used as the modified gold standard in this study of the three tests. The number of samples of

A. lumbricoides and T. trichiura at each intensity level is reported in Table 3. There were no

participants heavily infected with T. trichiura. Since it was not possible for the KK slides to be

transported to the laboratory in time for quantification of hookworm eggs, we were unable to

detect the intensity of infection of these cases.

UVC analysis

The UVC performed best at imaging A. lumbricoides (Tables 4 and 5), demonstrating higher

sensitivity in SSTT preparations (0.829, 95% CI .744-.914) than in KK (0.579, 95% CI .468-

.690), and high specificity in both SSTT and KK (0.971, 95% CI .915–1.03; 0.971, 95% CI .915–

1.03). These sensitivity numbers increased with increasing infection intensity (Fig 5). UVC

imaging of SSTT slide preparations of samples with AL showed a substantial level of concor-

dance with the modified gold standard reading, which was obtained through standard micros-

copy (K = 0.728), and UVC imaging of KK slide preparations demonstrated moderate

Table 2. Positive samples identified by standard microscopy of KK, MIF, and SSTT, and the modified gold stan-

dard, considered as any positive from the three standard assays.

Positive results with assay, n

KK MIF SSTT Modified gold standard

A. lumbricoides 78 73 65 79

T. trichiura 99 39 26 101

Hookworm 0� 4 18 22

KK, Kato-Katz technique; MIF, merthiolate-iodine-formaldehyde technique; SSTT, spontaneous sedimentation

technique in tube

�Kato-Katz readings could not be obtained for hookworm due to disintegration of the eggs in Kato-Katz slides

during transport to lab facility

https://doi.org/10.1371/journal.pntd.0007577.t002
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concordance with the modified gold standard (K = 0.439). For T. trichiura, the UVC demon-

strated low overall sensitivity through SSTT and KK (0.224, 95% CI .141-.307; 0.235, 95% CI

.151-.319, respectively), but high specificity (0.917, 95% CI .761–1.07; 1, 95% CI 1.00–1.00). As

infection intensity of T. trichiura increased, however, sensitivity increased (Fig 5). According

to WHO categories for infection intensity, sensitivity for low-intensity infections was 0.164,

which increased to 0.435 in moderate-intensity infections. There was little agreement with the

modified gold standard (K = 0.038 for SSTT, K = 0.063 for KK). The UVC also demonstrated

low sensitivity to hookworm eggs in both SSTT (0.318, 95% CI .123-.513) and KK (0.381, 95%

CI .173-.589) preparations.

Kankanet model analysis

Model 1, which was trained and evaluated on microscope images only, demonstrated high sen-

sitivity (1.00; 95% CI 1.00–1.00) and specificity (0.910; 95% CI 0.831–0.989) for T. trichiura,

low sensitivity (0.571; 95% CI 0.423–0.719) and specificity (0.500; 95% CI 0.275–0.725) for A.

lumbricoides, and low sensitivity (0.00; 95% CI 0.00–0.00) and specificity (0.800; 95% CI

0.693–0.907) for hookworm. Table 6 shows the full breakdown of sensitivity, specificity, posi-

tive predictive value, and negative predictive value of the different analyses performed by

Model 1 and Model 2. Though Model 1 was also evaluated for its performance on UVC pic-

tures of STH, it failed to recognize any, and thus the results are not tabulated. Model 2 was

trained on images taken both with microscopes and with UVC, and was tested with both types

of images. It outperformed Model 1 in every parameter, with high sensitivity and specificity

for microscope images all across the board and for UVC images of A. lumbricoides and hook-

worm. It performed poorly on UVC images of T. trichiura (sensitivity 0.093, 95% CI -0.138–

0.304; specificity 0.969, 95% CI 0.934–1.00), but had moderate PPV and NPV values (0.667

and 0.800, respectively).

Table 3. The breakdown of positive samples of A. lumbricoides and T. trichiura by WHO intensity of infection

categories, as measured by standard microscopy of Kato-Katz preparations.

A. lumbricoides T. trichiura
n % n %

Lowa 33 29.2 76 67.3

Moderateb 42 37.2 23 20.4

Heavyc 3 2.7 0 0.0

a1-4999 epg A. lumbricoides, 1–999 epg T. trichiura
b5000-49 999 epg A. lumbricoides, 1000–9999 epg T. trichiura
c�50 000 epg A. lumbricoides, �10 000 epg T. trichiura

https://doi.org/10.1371/journal.pntd.0007577.t003

Table 4. The sensitivity, specificity, and Cohen’s Kappa values of UVC readings by trained parasitologist against the modified gold standard using SSTT.

UVC with SSTT

A. lumbricoides T. trichiura Hookworm

Negative Positive Negative Positive Negative Positive

Modified gold standard Negative 33 1 11 1 85 3

Positive 13 63 76 22 15 7

Kappa 0.728 0.038 0.355

Sensitivity 0.829, 95% CI .744-.914 0.224, 95% CI .141-.307 0.318, 95% CI .123-.513

Specificity 0.971, 95% CI .915–1.03 0.917, 95% CI .761–1.07 0.966, 95% CI .928–1.00

https://doi.org/10.1371/journal.pntd.0007577.t004
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Discussion

This study found that UVC imaging of SSTT slides, though of low quality, still could be read

by trained parasitologists with a high sensitivity (0.829, 95% CI .744-.914) and specificity

(0.971, 95% CI .915–1.03) in A. lumbricoides, which is comparable to literature estimates of

KK sensitivity at 0.970 and specificity of 0.960 [5]. The UVC showed lower sensitivity for KK

preparations (0.579, 95% CI .468-.690). This UVC does not have sufficient image quality to be

used with T. trichiura or hookworm diagnosis, which have thinner and more translucent

membranes.

Despite UVC imaging having high sensitivity for A. lumbricoides, the 14% difference in sen-

sitivity needs improvement, with a goal of reaching similar sensitivity to standard microscopy,

before it can be feasibly used in large-scale STH control efforts. UVC’s specificity of 0.971

(95% CI 0.915–1.03) surpasses that of standard microscopy KK’s 0.960 specificity. Though cur-

rently shown to have insufficient sensitivity or specificity for use with T. trichiura or hook-

worm diagnosis, these are limitations believed to be related to the particular microscope

peripheral used in this study. This UVC achieved maximum magnification of approximately

215X at 600 px/mm; its resolution was 640x480 pixels. The magnification level with this

peripheral is sufficient, as other studies have shown success with T. trichiura with magnifica-

tion levels as low as 60X [29]. However, for the purposes of STH imaging, improvement of res-

olution and light source in this UVC may be necessary. Another study successfully imaged T.

trichiura and hookworm at a resolution of 2595x1944 pixels, which is substantially higher than

the 640x480 with this peripheral [20]. This UVC’s light source comes from the same direction

Table 5. The sensitivity, specificity, and Cohen’s Kappa values of UVC readings by trained parasitologist against the modified gold standard using KK.

UVC with Kato-Katz

A. lumbricoides T. trichiura Hookworm

Negative Positive Negative Positive Negative Positive

Modified gold standard Negative 33 1 12 0 64 25

Positive 32 44 75 23 13 8

Kappa 0.439 0.063 0.403

Sensitivity 0.579, 95% CI .468-.690 0.235, 95% CI .151-.319 0.381, 95% CI .173-.589

Specificity 0.971, 95% CI .915–1.03 1, 95% CI 1.00–1.00 0.719, 95% CI .637-.821

https://doi.org/10.1371/journal.pntd.0007577.t005

Fig 5. Sensitivity of UVC readings of SSTT and KK preparations for A. lumbricoides (left) and T. trichiura (right) increase with increasing intensity of

infection.

https://doi.org/10.1371/journal.pntd.0007577.g005
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as the camera, rather than shining through the sample as in most microscopy, which may have

reduced image quality and imaging ability.

Development of a proprietary microscope is another solution, which many other studies

have employed: a mobile phone microscope developed by Coulibaly et al. has demonstrated

similarly high sensitivity for Schistosoma mansoni (0.917; 95% CI 0.598–0.996), Schistosoma
haematobium (0.811; 95% CI 0.712–0.883) and Plasmodium falciparum (0.802, 1.00) [30,31];

other studies that employ ball lenses or low-cost foldable chassis show slightly lower sensitiv-

ity/specificity values [29,32]. Independent development of a smartphone microscope could

substantially improve the sensitivity and specificity of these devices to an acceptable level for

healthcare use, that is, not inferior to standard microscopy, while simultaneously decreasing

the cost per microscope. However, the advantage of using a commercially available microscope

is ease of access for rapid, large-scale implementation and feasibility for low-income rural

areas with a heavy burden of STH.

In the context of these villages in rural Madagascar, where STH prevalence can be as high as

93.0% for A. lumbricoides, 55.0% for T. trichiura, and 27.0% for hookworm as measured in

1998 [33], yet only school-aged children receive for mass drug administration, a rule-in test

with high specificity, which this UVC achieves, can be useful to reliably identify adults who

would also require antihelminthics. Another context in which this tool may be especially useful

is areas close to elimination of STH, to reduce the amounts of antihelminthics needed for STH

control [34].

Though Kankanet interpretation of UVC and microscope images yielded lower sensitivity

than trained parasitologist readings of these images, Kankanet Model 2 still achieved high sen-

sitivity for A. lumbricoides (0.696; 95% CI 0.625–0.767) and hookworm (0.714; 95% CI 0.401–

1.027) on both microscope and UVC images. Model 2 showed high sensitivity for T. trichiura
in microscope images (1.00; 95% CI 1.00–1.00), but low in UVC images (0.083; 95% CI

-0.138–0.304). Model 1 achieved lower sensitivity and specificity for all species, and could not

accurately interpret UVC images.

Model 2’s overall sensitivity for A. lumbricoides, T. trichiura, and hookworm (0.696, 0.154,

and 0.714, respectively) may not seem very high at first. However, these are sensitivity results

given for recognizing individual eggs. As an indication for treatment with antihelminthics

would only require one egg per fecal sample slide to be positively identified, the real likelihood

of this ANN-based object detection model giving an accurate reading is much higher than the

Table 6. Sensitivity, specificity, positive predictive value, and negative predictive value of Model 1 and Model 2, by types of images used.

Model 1 Model 2

Evaluation set Species Se (%) Sp (%) PPV (%) NPV (%) Se (%) Sp (%) PPV (%) NPV (%)

Microscope images AL 57.1 50.0 44.4 62.5 85.7 87.5 85.7 87.5

TT 100.0 91.0 80.0 100.0 100.0 100.0 100.0 100.0

H 0.0 80.0 0.0 61.5 66.7 100.0 100.0 80.0

UVC images AL 0.0 N/A N/A N/A 68.5 40.0 92.5 10.5

TT 0.0 N/A N/A N/A 8.3 96.9 50.0 73.8

H 0.0 N/A N/A N/A 100.0 100.0 100.0 100.0

All images AL 0.0 N/A N/A N/A 69.6 61.1 92.0 23.9

TT 0.0 N/A N/A N/A 15.4 97.8 66.7 80.0

H 0.0 N/A N/A N/A 71.4 100.0 100.0 96.2

AL, A. lumbricoides; H, hookworm; N/A, not applicable; NPV, negative predictive value; PPV, positive predictive value; Se, sensitivity; Sp, specificity; TT, T. trichiura.

Model 1 failed to identify any eggs in UVC images.

https://doi.org/10.1371/journal.pntd.0007577.t006

Artificial neural network and mobile microscopy for helminth diagnosis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007577 August 5, 2019 11 / 16

https://doi.org/10.1371/journal.pntd.0007577.t006
https://doi.org/10.1371/journal.pntd.0007577


per-egg sensitivity cited here. For example, even in an infection of A. lumbricoides at the mid-

dle of the range considered low-intensity (2500 eggs per gram), a slide would contain 104 eggs,

making the sensitivity of detection of infection in the slide nearly 1.00.

The difference in sensitivity and specificity between the models can be explained by the dif-

ferences in image sets used for training. Model 2 was trained with an image set of over twice

the size of Model 1’s image set; Model 2’s image set also contained images from both UVC and

standard microscopy modalities. It was a robust model, accurately detecting STH in images

with multiple examples of multiple species, despite being trained on an image set containing

mostly A. lumbricoides. It demonstrated a very low rate of false positives, considering the

amount of debris apropos to fecal samples. The Kankanet models can be improved by develop-

ing a larger image dataset, exploring other object detection meta-architectures, and optimizing

file size and computational requirements. A greater number and more even distribution of

images of parasite species would improve object detection model sensitivity.

Standard laboratory processing and diagnosis of STH is extremely time-consuming and

expensive and hence, not often practical for rural low-income communities. As smartphone

penetrance will only increase in the coming years, medical technology should leverage smart-

phones as portable computational equipment, as use and distribution of such software requires

no additional cost. Because it is able to be attached to smartphones and requires no external

power source than the smartphone itself, UVC is a suitable microscopy option for point-of-

care diagnosis. In addition, the smartphone application used in this study did not require

internet access, unlike those of previous studies [20].

UVC and Kankanet are cost-effective, with only the initial cost of $69.82 for the microscope

and stage setup, as well as the negligible cost of fecal analysis reagents. In the case of SSTT,

only microscope slides and Lugol’s iodine would be needed for fecal processing. These initial

costs are readily defrayed by the thousands of analyses performed with just one unit, the work-

hours gained by timely treatment of STH and prevention of STH re-infection, and the reduc-

tion of unnecessary drug administration and concomitant drug resistance. A detailed cost

analysis comparing the cost of standard microscopy and the Kankanet system for 2-sample

Kato-Katz testing of 10 villages in rural Madagascar (estimated 3000 people total) is shown in

Table 7. Whereas standard microscopy ends up costing around 1.33 USD per person tested,

the Kankanet system costs around 0.56 USD per person tested.

Table 7. Estimated cost (in USD) for a team of 4 health care workers to survey 10 villages, or 3000 2-slide Kato

Katz tests, using standard and Kankanet methods.

Standard Kankanet

Kato-Katz training 3.78 3.78

Slide interpretation training 7.56 1.26

Transportation to villages� 800 400

Time in villages� 400 1000

Time spent analyzing outside of village 1000 0

Laboratory usage% 110 0

Equipment# 1671.96 279.28

Total cost for 10 villages 3993.3 1684.32

Price per 2-slide Kato-Katz test 1.3311 0.56144

�Using the research center standard health care worker daily salary of 18,000 Ariary (approx. 5 USD), and hourly rate

of 2,250 Ariary (approx. 0.63 USD)
%Using the research center station fee rate of 2,000 Ariary per person per day (approx. .55 USD)
#Using the standard Amscope 40X-2000X Binocular Biological Microscope with Mechanical Stage, 417.99 USD, and

price for Kankanet setup (Jiusion Microscope and Aven X-Y microscope stand), 69.82 USD

https://doi.org/10.1371/journal.pntd.0007577.t007
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ANN-based object detection systems such as the one introduced here can be useful for

screening STH-endemic communities in the context of research, mass drug administrations

and STH mapping programs. In addition, Kankanet, rather than replacing human diagnosis,

could be a useful diagnostic training aid for healthcare workers and field researchers. With sus-

tained use of such a tool, these workers may more quickly learn how to identify such eggs

themselves.

Limitations of this study include that the UVC used was of insufficient image quality to pro-

duce accurate imaging of T. trichiura and hookworm. The Kankanet models employed used a

dataset limited to two imaging modalities: standard microscopy and UVC, and with images of

only three species of STH; in addition, images for this dataset were only taken of samples pre-

pared under KK conditions, so the efficacy of this system can only be assessed for those

conditions.

We conclude that parasitologist interpretation of UVC imaging of SSTT slides can be a

field test comparable to standard microscopy of KK for A. lumbricoides. Second, we conclude

that ANN interpretation is a feasible avenue for development of a point-of-care diagnostic aid.

With 85.7% sensitivity and 87.5% specificity for A. lumbricoides, 100.0% sensitivity and 100.0%

specificity for T. trichiura, and 66.7% sensitivity, 100.0% specificity for hookworm, Kankanet

Model 2 has demonstrated stellar results in interpreting UVC images, even though it was

trained with a limited proof-of-concept dataset. We hope that continued expansion of the

Kankanet image database, improved imaging technology, and improvement of machine learn-

ing technology will soon enable Kankanet to achieve rates comparable to those of

parasitologists.
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