17 research outputs found

    Use of the Peak-Detector mode for gain calibration of SiPM sensors with ASIC CITIROC read-out

    Get PDF
    The Cherenkov Imaging Telescope Integrated Read Out Chip (CITIROC) is a 32-channel fully analogue front-end ASIC dedicated to the read-out of silicon photo-multiplier (SiPM) sensors that can be used in a variety of experiments with different applications: nuclear physics, medical imaging, astrophysics, etc. It has been adopted as front-end for the focal plane detectors of the ASTRI-Horn Cherenkov telescope and, in this context, it was modified implementing the peak detector reading mode to satisfy the instrument requirements. For each channel, two parallel AC coupled voltage preamplifiers, one for the high gain and one for the low gain, ensure the read-out of the charge from 160 fC to 320 pC (i.e. from 1 to 2000 photo-electrons with SiPM gain = 106^{6}, with a photo-electron to noise ratio of 10). The signal in each of the two preamplifier chains is shaped and the maximum value is captured by activating the peak detector for an adjustable time interval. In this work, we illustrate the peak detector operation mode and, in particular, how this can be used to calibrate the SiPM gain without the need of external light sources. To demonstrate the validity of the method, we also present and discuss some laboratory measurements.Comment: 11 pages, 9 figures, 15th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD19) 14-17 October 2019 Siena, Italy (Submitted to JINST peer review on 05 January 2020

    Characterization of a 6×6-mm2 75-μm cell MPPC suitable for the Cherenkov Telescope Array project

    Get PDF
    This paper presents the latest characterization results of a novel Low Cross-Talk (LCT) large-area (6×6-mm2) Multi-Pixel Photon Counter (MPPC) detector manufactured by Hamamatsu, belonging to the recent LCT5 family and achieving a fill-factor enhancement and cross-talk reduction. In addition, the newly adopted resin coating is demonstrated to yield improved photon detection capabilities in the 290–350 nm spectral range, making the new LCT MPPC particularly suitable for emerging applications like Cherenkov Telescopes. For a 3×3-mm2 version of the new MPPC under test, a comparative analysis of the large pixel pitch (75-µm) detector versus the smaller pixel pitch (50-µm) detector is also undertaken. Furthermore, measurements of the 6×6-mm2 MPPC response versus the angle of incidence are provided for the characterized device

    Temperature characterization of the CITIROC front-end chip of the ASTRI SST-2M Cherenkov camera

    Get PDF
    The Cherenkov Imaging Telescope Integrated Read Out Chip, CITIROC, is the front-end chip of the camera for the ASTRI SST-2M, one of the prototypes for the small sized telescopes of the Cherenkov Telescope Array, CTA. The telescope, operating in the energy range from a few TeV to beyond 300 TeV, is characterized by innovative technological solutions. The optical system is arranged in a dual-mirror configuration and the focal plane camera consists of a matrix of multi-pixel Silicon Photo-Multipliers. Among others, one of the most important project issue consists in the thermal characterization of the camera that, in the ASTRI SST-2M prototype, is thermo-controlled in a narrow temperature range. A set of at least nine similar telescopes will form the ASTRI mini-array proposed to be installed at the CTA southern site. In the cameras of the ASTRI mini-array telescopes the thermal control could be relaxed with a considerable gain in terms of power consumption, cost and simplicity. So, a study of the temperature dependence of the camera components is needed. The present work addresses this issue showing the results of the measurements carried out on CITIROC as a function of the temperature. We focused our investigation on the pedestal stability, linearity of the charge output signal, preamplifier gain and trigger uniformity in the temperature range 15-30°C. Our results show, for each of the above-mentioned measurable quantities, that temperature dependency is at the level of a few percent

    Scientific report of the project COMpton Polarimeter with Avalanche Silicon readout (COMPASS)

    Get PDF
    Rendicontazione scientifica mandata all'INAF alla conclusione del progetto COMpton Polarimeter with Avalanche Silicon readout (COMPASS), finanziato dal bando TECNO INAF 2014COMpton Polarimeter with Avalanche Silicon readout (COMPASS) is a research and development project that aims to measure the polarization of X-ray photons through Compton Scattering. The measurement is obtained by using a set of small rods of fast scintillation materials with both low-Z (as active scatterer) and high-Z (as absorber), all read-out with Silicon Photomultipliers. By this method we can operate scattering and absorbing elements in coincidence, in order to reduce the background. This is the scientific report submitted to INAF at the end of the COMPASS project, funded through the grant TECNO INAF 201

    ASTRI SST-2M camera electronics

    Get PDF
    ASTRI SST-2M is an Imaging Atmospheric Cherenkov Telescope (IACT) developed by the Italian National Institute of Astrophysics, INAF. It is the prototype of the ASTRI telescopes proposed to be installed at the southern site of the Cherenkov Telescope Array, CTA. The optical system of the ASTRI telescopes is based on a dual mirror configuration, an innovative solution for IACTs, and the focal plane of the camera is composed of silicon photo-multipliers (SiPM), a recently developed technology for light detection, that exhibit very fast response and an excellent single photoelectron resolution. The ASTRI camera electronics is specifically designed to directly interface the SiPM sensors, detecting the fast pulses produced by the Cherenkov flashes, managing the trigger generation, the digital conversion of the signals and the transmission of the data to an external camera server connected through a LAN. In this contribution we present the general architecture of the camera electronics developed for the ASTRI SST-2M prototype, with special emphasis to some innovative solutions

    The innovative Cherenkov camera based on SiPM sensors of the ASTRI-Horn telescope: from the T/M and electrical design to the full assembly and testing in a harsh environment

    Get PDF
    ASTRI-Horn is a prototypal telescope of an imaging atmospheric Cherenkov telescope developed by the Italian National Institute of Astrophysics (INAF), proposed for the Cherenkov Telescope Array (CTA) Observatory. The CTA Observatory represents the next generation of imaging atmospheric Cherenkov telescopes and will explore the very highenergy domain from a few tens of GeV up to few hundreds of TeV. It will be composed of large-, medium-, and small sized telescopes; ASTRI-Horn is an end-to-end prototype proposed for the Small Sized array. The main scientific instrument of the ASTRI-Horn telescope is an innovative and compact Camera with Silicon- Photomultiplier based detectors and a specifically designed fast read-out electronics based on a custom peak-detector mode. The thermo-mechanical assembly is designed to host both the entire electronics chain, from the sensors to the raw data transmission system and the calibration system, and the complete thermoregulation system. This contribution gives a high level description of the T/M and electrical design of the Cherenkov Camera, it describes the assembling procedure of its different subsystems and their integration into the complete camera system. A discussion about possible design improvements coming from the problems/difficulties encountered during assembly is also presented. Finally, results from engineering tests conducted in-field are also presented

    The ASTRI camera for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) foresees, in its southern site (Chile), the implementation of up to 70 small-sized telescopes (SSTs), which will extend the energy coverage up to hundreds of TeV. It has been proposed that one of the first set of CTA SSTs will be represented by the ASTRI mini-array, which includes (at least) nine ASTRI telescopes. The endto-end prototype of such telescopes, named the ASTRI SST-2M, is installed in Italy and it is now completing the overall commissioning and entering the science verification phase. ASTRI telescopes are characterized by an optical system based on a dual-mirror Schwarzschild-Couder design and a camera at the focal plane composed of silicon photomultiplier sensors managed by a fast read-out electronics specifically designed. Based on a custom peak-detector mode, the ASTRI camera electronics is designed to perform Cherenkov signal detection, trigger generation, digital conversion of the signals and data transmission to the camera server. In this contribution we will describe the main features of the ASTRI camera, its performance and results obtained during the commissioning phase of the ASTRI SST-2M prototype in view of the ASTRI mini-array implementation

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore