222 research outputs found

    Strongly birefringent cut-wire pair structure as negative index wave plates at THz frequencies

    Full text link
    We report a new approach for the design and fabrication of thin wave plates with high transmission in the terahertz (THz) regime. The wave plates are based on strongly birefringent cut-wire pair metamaterials that exhibit refractive indices of opposite signs for two orthogonal polarization components of an incident wave. As specific examples, we fabricated and investigated a quarter- and a half-wave plate that revealed a peak intensity transmittance of 74% and 58% at 1.34 THz and 1.3 THz, respectively. Furthermore, the half wave plate displayed a maximum figure of merit (FOM) of 23 at 1.3 THz where the refractive index was -1.7. This corresponds to one of the highest FOMs reported at THz frequencies so far. The presented results evidence that negative index materials enter an application stage in terms of optical components for the THz technology.Comment: 4 pages, 3 figures, submitted to Appl. Phys. Let

    Multinational corporation techniques

    Full text link

    Gott auf dem Weg zum Menschen im Licht der Dinge

    Get PDF

    LPS differentially regulates adhesion and transendothelial migration of human monocytes under static and flow conditions

    Get PDF
    One of the key components of the innate immune response is the recognition of microbial products such as LPS by Toll-like receptors on monocytes and neutrophils. We show here that short-term stimulation of primary human monocytes with LPS led to an increase in adhesion of monocytes to endothelial cells and a dramatic decrease in transendothelial migration under static conditions. In contrast, under normal physiological flow, monocyte adhesion and migration across a human umbilical vein endothelial cell monolayer appeared to be unaffected by LPS treatment. LPS stimulation of monocytes activated β1 and β2 integrins, but did not increase their surface expression levels. During septic shock, reduction in blood flow as a result of vasodilation and vascular permeability leads to adhesion and accumulation of LPS-stimulated circulating monocytes onto the blood vessel walls. The different findings of monocyte migration under static and flow conditions in our study may offer one explanation for this phenomenon. The rapid engagement of LPS-activated monocytes preventing transendothelial migration could represent a novel mechanism of bacterial exclusion from the vasculature. This occurs during the early stages of sepsis, and in turn may modulate the severity of the pathophysiolog

    Nematic-Isotropic Spinodal Decomposition Kinetics of Rod-like Viruses

    Get PDF
    We investigate spinodal decomposition kinetics of an initially nematic dispersion of rod-like viruses (fd virus). Quench experiments are performed from a flow-stabilized homogeneous nematic state at high shear rate into the two-phase isotropic-nematic coexistence region at zero shear rate. We present experimental evidence that spinodal decomposition is driven by orientational diffusion, in accordance with a very recent theory.Comment: 17 pages, 6 figures, accepted in Phys. Rev.

    Herschel SPIRE FTS Relative Spectral Response Calibration

    Get PDF
    Herschel/SPIRE Fourier transform spectrometer (FTS) observations contain emission from both the Herschel Telescope and the SPIRE Instrument itself, both of which are typically orders of magnitude greater than the emission from the astronomical source, and must be removed in order to recover the source spectrum. The effects of the Herschel Telescope and the SPIRE Instrument are removed during data reduction using relative spectral response calibration curves and emission models. We present the evolution of the methods used to derive the relative spectral response calibration curves for the SPIRE FTS. The relationship between the calibration curves and the ultimate sensitivity of calibrated SPIRE FTS data is discussed and the results from the derivation methods are compared. These comparisons show that the latest derivation methods result in calibration curves that impart a factor of between 2 and 100 less noise to the overall error budget, which results in calibrated spectra for individual observations whose noise is reduced by a factor of 2-3, with a gain in the overall spectral sensitivity of 23% and 21% for the two detector bands, respectively.Comment: 15 pages, 13 figures, accepted for publication in Experimental Astronom

    Summary and Evaluation of the EDEN ISS Public Outreach Activities

    Get PDF
    EDEN ISS is a European project focused on advancing bio-regenerative life support systems, in particular plant cultivation in space. A mobile test facility was designed and built between March 2015 and October 2017. The facility incorporates a Service Section which houses several subsystems necessary for plant cultivation and the Future Exploration Greenhouse. The latter is built similar to a future space greenhouse and provides a fully controlled environment for plant cultivation. The facility was setup in Antarctica in January 2018 and successfully operated between February and November of the same year. During that nine month period around 270 kg of food was produced by the crops cultivation in the greenhouse. It is the wish and more often the need for scientific projects to communicate their outcomes not only to the scientific community, but also to the general public. The EDEN ISS project and in particular the experimental phase in Antarctica was accompanied by extensive public outreach activities. Presence in social media, a project website, informative flyers, an experimental toolkit for young students were created in order to engage with the general public. This paper describes the different public outreach activities of the project and also evaluates their effectiveness. For the evaluation, statistics from the website and social media accounts as well as responses to press releases and educational activities are being displayed. Based on the experience from the outreach campaign of EDEN ISS, the paper provides recommendations on how to organize and conduct public outreach activities for scientific projects in space exploratio

    Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses

    Get PDF
    We investigate the kinetics of phase separation for a mixture of rodlike viruses (fd) and polymer (dextran), which effectively constitutes a system of attractive rods. This dispersion is quenched from a flow-induced fully nematic state into the region where the nematic and the isotropic phase coexist. We show experimental evidence that the kinetic pathway depends on the overall concentration. When the quench is made at high concentrations, the system is meta-stable and we observe typical nucleation-and-growth. For quenches at low concentration the system is unstable and the system undergoes a spinodal decomposition. At intermediate concentrations we see the transition between both demixing processes, where we locate the spinodal point.Comment: 11 pages, 6 figures, accepted in J. Phys.: Condens. Matter as symposium paper for the 6th Liquid Matter Conference in Utrech

    Adapters: A Unified Library for Parameter-Efficient and Modular Transfer Learning

    Full text link
    We introduce Adapters, an open-source library that unifies parameter-efficient and modular transfer learning in large language models. By integrating 10 diverse adapter methods into a unified interface, Adapters offers ease of use and flexible configuration. Our library allows researchers and practitioners to leverage adapter modularity through composition blocks, enabling the design of complex adapter setups. We demonstrate the library's efficacy by evaluating its performance against full fine-tuning on various NLP tasks. Adapters provides a powerful tool for addressing the challenges of conventional fine-tuning paradigms and promoting more efficient and modular transfer learning. The library is available via https://adapterhub.ml/adapters.Comment: EMNLP 2023: Systems Demonstration

    Calibration of the AKARI Far-Infrared Imaging Fourier Transform Spectrometer

    Full text link
    The Far-Infrared Surveyor (FIS) onboard the AKARI satellite has a spectroscopic capability provided by a Fourier transform spectrometer (FIS-FTS). FIS-FTS is the first space-borne imaging FTS dedicated to far-infrared astronomical observations. We describe the calibration process of the FIS-FTS and discuss its accuracy and reliability. The calibration is based on the observational data of bright astronomical sources as well as two instrumental sources. We have compared the FIS-FTS spectra with the spectra obtained from the Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO) having a similar spectral coverage. The present calibration method accurately reproduces the spectra of several solar system objects having a reliable spectral model. Under this condition the relative uncertainty of the calibration of the continuum is estimated to be ±\pm 15% for SW, ±\pm 10% for 70-85 cm^(-1) of LW, and ±\pm 20% for 60-70 cm^(-1) of LW; and the absolute uncertainty is estimated to be +35/-55% for SW, +35/-55% for 70-85 cm^(-1) of LW, and +40/-60% for 60-70 cm^(-1) of LW. These values are confirmed by comparison with theoretical models and previous observations by the ISO/LWS.Comment: 22 pages, 10 figure
    corecore