12,849 research outputs found

    The incorporation of carbon nanofibres to enhance the properties of hot compacted self-reinforced single polymer composites

    Get PDF
    Nanoscale fillers offer the potential for significant enhancement of a range of polymer properties, as they are available in a wide variety of shapes and properties. Carbon nanotubes (CNT) and nanofibres (CNF) have been used extensively in the literature, yet very few analytical studies of the material properties have been reported. Here we use the Cox-Krenchel model to interpret the experimentally measured changes in Young’s modulus from particle aspect ratio reduction during to processing, in addition to the measurement of the mechanical properties of the composite. Hot Compaction, a process developed at the University of Leeds [1], utilises high modulus, highly oriented elements to form thick section, homogeneous sheets without the need to introduce a second phase of different chemical composition. These ‘single polymer’ composites are produced by selective melting on the surface of the oriented elements; on cooling, this molten material re-crystallises to form a matrix phase and bind the oriented elements together. CNF filled polypropylene (PP) tapes have been produced and successfully hot compacted into sheets. The properties of these nanofilled self-reinforced single polymer composites is reported. Of particular interest has been to investigate the introduction of interleaved films, an extension of recent work conducted by two of this papers authors [2] of the same polymer or nanocomposite in order to establish the change in properties when the CNF are incorporated in the drawn tapes, in the interleaved films or both

    The Dirac equation without spinors

    Full text link
    In the first part of the paper we give a tensor version of the Dirac equation. In the second part we formulate and analyse a simple model equation which for weak external fields appears to have properties similar to those of the 2--dimensional Dirac equation.Comment: 20 pages. Submitted for publication in the proceedings of the conference `Functional analysis, partial differential equations and applications', Rostock (Germany) 31 August--4 September 199

    On generalized processor sharing and objective functions: analytical framework

    Get PDF
    Today, telecommunication networks host a wide range of heterogeneous services. Some demand strict delay minima, while others only need a best-effort kind of service. To achieve service differentiation, network traffic is partitioned in several classes which is then transmitted according to a flexible and fair scheduling mechanism. Telecommunication networks can, for instance, use an implementation of Generalized Processor Sharing (GPS) in its internal nodes to supply an adequate Quality of Service to each class. GPS is flexible and fair, but also notoriously hard to study analytically. As a result, one has to resort to simulation or approximation techniques to optimize GPS for some given objective function. In this paper, we set up an analytical framework for two-class discrete-time probabilistic GPS which allows to optimize the scheduling for a generic objective function in terms of the mean unfinished work of both classes without the need for exact results or estimations/approximations for these performance characteristics. This framework is based on results of strict priority scheduling, which can be regarded as a special case of GPS, and some specific unfinished-work properties in two-class GPS. We also apply our framework on a popular type of objective functions, i.e., convex combinations of functions of the mean unfinished work. Lastly, we incorporate the framework in an algorithm to yield a faster and less computation-intensive result for the optimum of an objective function

    Room-Temperature One-Pot Synthesis of pH-Responsive Pyridine-Functionalized Carbon Surfaces

    Get PDF
    Carbon surfaces (glassy carbon, graphite, and boron-doped diamond) were functionalized with layers composed of linked pyridinium and pyridine moieties using simple electrochemical reduction of trifluoroacetylpyridinium. The pyridinium species was generated in situ in solution by the reaction of trifluoroacetic anhydride and pyridine precursors and underwent electrochemical reduction at −1.97 V vs Fc/Fc+, as determined by cyclic voltammetry. The pyridine/pyridinium films were electrodeposited at room temperature, on a timescale of minutes, and were characterized using X-ray photoelectron spectroscopy. The as-prepared films have a net positive charge in aqueous solution at pH 9 and below due to the pyridinium content, confirmed by the electrochemical response of differently charged redox molecules at the functionalized surfaces. The positive charge can be enhanced further through protonation of the neutral pyridine component by controlling the solution pH. Moreover, the nitrogen-acetyl bond can be cleaved through base treatment to purposefully increase the neutral pyridine proportion of the film. This results in a surface that can be “switched” from functionally near neutral to a positive charge by treatment in basic and acidic solutions, respectively, through manipulation of the protonation state of the pyridine. The functionalization process demonstrated here is readily achievable at a fast timescale at room temperature and hence can allow for rapid screening of surface properties. Such functionalized surfaces present a means to test in isolation the specific catalytic performance of pyridinic groups toward key processes such as oxygen and CO2 reduction

    The X-ray spectrum of the Seyfert I galaxy Markarian 766: Dusty warm absorber or relativistic emission lines?

    Get PDF
    Competing models for broad spectral features in the soft X-ray spectrum of the Seyfert I galaxy Mrk 766 are tested against data from a 130 ks XMM-Newton observation. A model including relativistically broadened Lyalpha emission lines of O VIII N VII and C VI is a better fit to 0.3-2 keV XMM RGS data than a dusty warm absorber. Moreover, the measured depth of neutral iron absorption lines in the spectrum is inconsistent with the magnitude of the iron edge required to produce the continuum break at 17-18 Angstrom in the dusty warm absorber model. The relativistic emission line model can reproduce the broadband (0.1-12 keV) XMM EPIC data with the addition of a fourth line to represent emission from ionized iron at 6.7 keV and an excess due to reflection at energies above the iron line. The pro le of the 6.7 keV iron line is consistent with that measured for the low-energy lines. There is evidence in the RGS data, at the 3sigma level, of spectral features that vary with source flux. The covering fraction of warm absorber gas is estimated to be 12%. Iron in the warm absorber is found to be overabundant with respect to CNO, compared to solar values

    Endovascular Versus Open Repair For Chronic Type B Dissection Treatment: A meta-analysis.

    Get PDF
    BACKGROUND: The respective place of endovascular versus open surgery in thoracic dissecting aneurysm treatment remains debatable. This comprehensive review seeks to analyse the outcomes of endovascular repair (ER) compared to open surgery (OS) in chronic type B aortic dissection treatment. METHODS: Embase and Medline searches (2000 - 2017)were performed following Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines. Outcomes data extracted comprised firstly early mortality and major complications: stroke, spinal cord ischemia (SCI), dialysis, respiratory complications; secondly, late survival and reinterventions. Reintervention causes were divided into proximal, adjacent, distal. Comparative studies provided comparative meta-analyses. Non-comparative studies were analysed in pooled proportion meta-analyses for each group. RESULTS: 39 studies were identified: 10 OS, 25 ER, 4 comparative. Comparative studies meta-analyses revealed lower early mortality for ER (OR: 4.13, 95% CI: 1.10 - 15.4), stroke (OR: 4.33, 95% CI: 1.02-18.35), SCI (OR: 3.3, 95% CI: 0.97 - 11.25) and respiratory complications (OR: 6.88, 95% CI:1.52- 31.02), but higher reintervention rate (OR: 0.34, 95% CI: 0.16 - 0.69). Mid-term survival was similar (OR: 1.19, 95% CI:0.42 - 3.32). Non-comparative studies analyses showed distal causes as the principal reintervention indication in both groups: OS 73%; ER 59%. Reintervention procedures were mainly surgical for OS (85%), mainly endovascular for ER (75%). Rupture rates were: OS 1.2% , ER 3%. CONCLUSIONS: This recent non -randomised data shows early ER benefit, unsustained at mid-term. Reintervention is higher after ER, necessitating improved technique. However, OS is exempt neither from reintervention nor rupture. Both techniques have their place, but patient selection is key

    Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships

    Get PDF
    Direct measurements of the turbulent air–sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform or to wind–wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error and that time-varying motion-dependent flow distortion is the likely source

    The impact of contact tracing in clustered populations

    Get PDF
    The tracing of potentially infectious contacts has become an important part of the control strategy for many infectious diseases, from early cases of novel infections to endemic sexually transmitted infections. Here, we make use of mathematical models to consider the case of partner notification for sexually transmitted infection, however these models are sufficiently simple to allow more general conclusions to be drawn. We show that, when contact network structure is considered in addition to contact tracing, standard “mass action” models are generally inadequate. To consider the impact of mutual contacts (specifically clustering) we develop an improvement to existing pairwise network models, which we use to demonstrate that ceteris paribus, clustering improves the efficacy of contact tracing for a large region of parameter space. This result is sometimes reversed, however, for the case of highly effective contact tracing. We also develop stochastic simulations for comparison, using simple re-wiring methods that allow the generation of appropriate comparator networks. In this way we contribute to the general theory of network-based interventions against infectious disease
    • 

    corecore