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Abstract. Today, telecommunication networks host a wide range of het-
erogeneous services. Some demand strict delay minima, while others only
need a best-effort kind of service. To achieve service differentiation, net-
work traffic is partitioned in several classes which is then transmitted
according to a flexible and fair scheduling mechanism. Telecommunica-
tion networks can, for instance, use an implementation of Generalized
Processor Sharing (GPS) in its internal nodes to supply an adequate
Quality of Service to each class. GPS is flexible and fair, but also no-
toriously hard to study analytically. As a result, one has to resort to
simulation or approximation techniques to optimize GPS for some given
objective function. In this paper, we set up an analytical framework
for two-class discrete-time probabilistic GPS which allows to optimize
the scheduling for a generic objective function in terms of the mean
unfinished work of both classes without the need for exact results or
estimations/approximations for these performance characteristics. This
framework is based on results of strict priority scheduling, which can
be regarded as a special case of GPS, and some specific unfinished-work
properties in two-class GPS. We also apply our framework on a popu-
lar type of objective functions, i.e., convex combinations of functions of
the mean unfinished work. Lastly, we incorporate the framework in an
algorithm to yield a faster and less computation-intensive result for the
optimum of an objective function.

Keywords: Generalized Processor Sharing (GPS), optimization, queueing, schedul-
ing, objective function

1 Introduction

Times when telecommunication networks were used for one single service like
telephony or television are long gone. Nowadays, telecommunication systems host
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a wide collection of services. Amongst those services are the traditional services
like internet, telephony, and television, but modern telecommunication networks
also support more demanding interactive multimedia services such as online
gaming and video conferencing. Every service desires other network requirements
in order to deliver a certain Quality of Service (QoS) or Quality of Experience
(QoE) to the end user [4, 12]. Hence, the network needs a way to differentiate
services. This can be achieved by dividing the network traffic into several classes
and implementing some kind of priority scheduling amongst those classes.

Giving strict priority to the different classes in a hierarchical way may not
be flexible enough. Additionally, strict priority is not fair since a high load of a
higher-priority class can lead to starvation of lower-priority classes [3, 5, 6]. One
scheduling mechanism able to deliver fairness and flexibility is Generalized Pro-
cessor Sharing (GPS) [9,10]. With GPS, each class is given a certain weight and
the available link capacity is shared according to the weights of the backlogged
classes. In this way, no capacity goes to waste and each class gets a minimum ca-
pacity. Starvation is thus not an issue for GPS. The biggest drawback of all GPS-
like scheduling mechanisms is the complexity of obtaining analytical results for
their performance characteristics, such as (mean) delays, queue contents or un-
finished work. As a consequence, it is hard to analytically determine the optimal
weights minimizing an objective function that depends on these characteristics.

In this paper, we consider a discrete-time, probabilistic emulation of single-
server, two-class GPS. The weights of the two classes are normalized such that
they sum up to one. Then setting the weight of one of the classes to 1 im-
plies that this class has strict priority over the other class; so strict priority
scheduling can be seen as a special case of GPS. Strict priority scheduling is
well-studied and allows, in many important cases, for an explicit analytical so-
lution. In the remainder, we first show how to use (i) results of strict prior-
ity scheduling and (ii) some specific properties of the unfinished work in this
GPS system, to transform a generic objective function as to determine its be-
haviour. This transformation leads to a format which does not require exact
results or estimations/approximations for performance characteristics. It allows
to find the number of (local) extrema and inflection points and determine the
values of the objective function in these points. This analytical framework can
thus be invaluable to network operators as it provides an opportunity for them
to quickly estimate the need for the possible time-consuming quest for the opti-
mal weight. Furthermore, in case such a quest is recommended, the framework
helps to make it more efficient.

Secondly, we extend the results of [13], where we have considered the same
GPS-like model. Our theoretical study there concentrated on the behaviour of
a specific type of objective functions, i.e., convex combinations of increasing
functions (both convex, concave or linear) of the mean unfinished work of both
classes. Here, we consider a more general type of objective functions, i.e., con-
vex combinations of (more) general functions of the mean unfinished work of
both classes. This removes the requirement for the functions of the unfinished
work to be increasing and both either convex, concave or linear in the relevant
domain. We show how to study the behaviour of this popular type of objective
functions, based on some new theorems and by using the analytical framework
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Fig. 1. GPS system at hand

described in the first part of our paper. Finally, we show how to exploit our
theoretical results in a sensitivity analysis on the objective function parameters
of the optimum. This is very useful for network operators, as it allows them to
avoid simulating the system or use complex approximation techniques.

In the next section, we unfold our analytical framework, for a generic objec-
tive function. We show some illustrative examples of our findings in Sect. 3. In
Sect. 4, we apply this framework to study a more specific type of objective func-
tions. We prove a theorem to easily carry out the higher order derivative test on
this type of objective functions and demonstrate how to study the behaviour of
these objective functions with respect to (w.r.t.) the GPS weights and the coef-
ficients in these functions. Before summarizing the most important conclusions,
we illustrate the gains of the framework with a practical example in Sect. 5.

2 Analytical Framework

As already mentioned, we consider a discrete-time GPS model with one server
and two traffic classes. We denote these classes by class 1 and class 2. The
weights of both classes are normalized: class 1 is assigned weight β and class 2
is assigned weight 1− β, with 0 ≤ β ≤ 1. So when both classes are backlogged,
the server will choose a class-1 packet with probability β and a class-2 packet
with probability 1 − β. In case one of the classes is not backlogged, the server
picks a packet of the other class. For the sake of convenience, we assume that
both classes have their own queue. This GPS system is depicted in Fig. 1. The
cases β = 0 and β = 1 reduce to strict priority scheduling.

Next, we define the unfinished work in a queue at the beginning of a slot as
the sum of the residual service/transmission times of the packets present in the
queue at that moment. It is obvious that the unfinished work in both queues
depends on the parameter β: the lower (higher) the value of β, the less capacity
for class 1 (2). Therefore, the mean unfinished work in queue j at the beginning
of a random slot in steady state is denoted as w̄j(β) (j = 1, 2). We assume that
the arrival and service processes of the system at hand are such that w̄1(β) and
w̄2(β) satisfy two important properties, i.e.,

Property 1. Function w̄1(β) + w̄2(β) is independent of β.
Property 2. w̄2(β) and w̄1(β) are analytic and strictly monotonic (increasing

and decreasing, respectively) w.r.t. β, i.e., on the interval [0, 1].

These properties basically follow (i) from the observation that GPS is a work-
conserving scheduling mechanism and (ii) that class 2 is given less capacity with
increasing β, respectively (see, e.g., [13,14,18] for more formal proofs). (In fact,



only strict monotonicity of one of the w̄j(β) functions is required as Property 1
implies the other is stricly monotone as well.) The first property states that the
mean total unfinished work is a constant w.r.t. β. This constant, say w̄T , can
be calculated explicitly for a whole range of arrival and service processes. In-
deed, since the scheduling mechanism is work-conserving, in every time slot one
unit of work (if any) is executed. So to study the total unfinished work, we
can consider the system to be a single queue consisting of units of work which
are, for instance, executed according to a First-In-First-Out (FIFO) schedul-
ing. Discrete-time, single-queue systems with a FIFO scheduling are much easier
to study analytically than multi-queue systems (see, e.g., [2]).

The second property, furthermore, has important consequences as well. Since
w̄2(β) is continuous on the interval [0, 1] and takes the values w̄2(0) and w̄2(1)
at each end of that interval, we can apply the intermediate value theorem to
conclude that w̄2(β) takes any value between w̄2(0) and w̄2(1) at minimum one
point within [0, 1]. From the strict monotonic increasing property, finally, we have
that w̄2(β) is bijective on [0, 1], i.e., that there is a one-to-one correspondence
between all values in [0, 1] and all values in [w̄2(0), w̄2(1)]. For w̄1(β), we can set
up a similar reasoning. However, since w̄1(β) is decreasing w.r.t. β, the image of
w̄1(β) is the interval [w̄1(1), w̄1(0)]. For ease of notation, we define the intervals
[w̄1(1), w̄1(0)] and [w̄2(0), w̄2(1)] as Ω1 and Ω2, respectively. For a whole range
of arrival and service processes, Ω1 and Ω2 can be determined explicitly, as they
arise from results of strict priority systems (see, e.g., [16, 17]).

Now we turn to optimization. The optimal β is defined as the β-value that
minimizes some objective function. In the context of scheduling mechanisms,
objective functions are often constructed in terms of (mean) delays or hold-
ing times. Here, we assume the objective function to be a generic function of
the mean unfinished work in both queues, i.e., f(w̄1(β), w̄2(β)). 3 It is clear
that the objective function f(w̄1(β), w̄2(β)) can be seen as a function in terms

of β, say F (β) , f(w̄1(β), w̄2(β)), with domain [0, 1]. The objective function
f(w̄1(β), w̄2(β)), however, can also be expressed in terms of another single vari-
able. In particular, the first unfinished-work property states that w̄1(β) = w̄T −
w̄2(β), implying that f(w̄1(β), w̄2(β)) can be expressed in terms of w̄2(β) only.
With a slight abuse of notation, we define this format as f∗(w̄2). It is obvious that
F = f∗ ◦ w̄2. As mentioned earlier, analytical results for w̄2(β) are notoriously
complex to obtain, so we need estimations/approximations for this performance
measure to study the objective function f(w̄1(β), w̄2(β)) in terms of β. However,
since we know the image (Ω2 = [w̄2(0), w̄2(1)]) and behaviour (continuous and
strictly increasing) of w̄2(β), we can already study f(w̄1(β), w̄2(β)) in terms of
w̄2(β) instead of β, with domain Ω2 instead of [0, 1] (i.e., studying f∗(w̄2)).

Consequently, we can observe the number of extrema and inflection points
and determine the values of f(w̄1(β), w̄2(β)) in these points without running sim-

3 In some specific cases, it is possible to find easy relations between the mean unfinished
work in both queues and the corresponding mean queue contents and/or delays
(see [13] for such a case). Then one can initially consider an objective function in
terms of, e.g., mean packet delays, which may be practically most relevant in the
context of heterogeneous services, translate it to an objective function in terms of the
mean unfinished work in both queues, and apply our framework to study the latter.



ulations or relying on possibly inaccurate approximate expressions. Obviously,
we do not know the β-values corresponding to these points (except when they
coincide with the endpoints). To determine these β-values, we still need esti-
mations/approximations. Now some preliminary conclusions can be drawn from
the behaviour of f∗(w̄2). For instance, the minimum can be in the endpoints
β = 0 or β = 1. In that case, strict priority is optimal and we do not have
to simulate. Another possible conclusion is that the difference in the objective
function between the minimum and one of the endpoints is too small to justify a
time-consuming quest for the β-value corresponding to the minimum. Summa-
rized, from the analysis of f∗(w̄2), an interval in Ω2 with an acceptable value for
the objective function can be selected. The optimization problem then reduces
to finding a value of β for which the continuous and monotonic function w̄2(β)
reaches a value in the selected interval (stopping criterium). In the next section,
we demonstrate these findings by means of some illustrative examples.

3 Some Illustrative Examples

For the examples, we consider one-slot service times and a two-dimensional bi-
nomial arrival process characterized by the joint probability generating function

A(z1, z2) ,

(
1 +

λ1

N
(z1 − 1) +

λ2

N
(z2 − 1)

)N
, (1)

of the independently and identically distributed number of class-1 and class-2
arrivals in a slot. Here, λj (j = 1, 2) is the arrival rate of class-j packets. This is
the arrival process in a queue of an NxN output-queueing switch with Bernoulli
arrivals at its inlets and with independent and uniform routing towards the
outlets. Parameter N expresses the maximum total number of arrivals in a queue
during a slot. For the sake of convenience, we also introduce the parameters λT
and α, indicating the total arrival rate (i.e., λT = λ1 + λ2) and the fraction
of class-1 packets in the overall arrival stream (i.e., α = λ1

λT
), respectively. A

queueing model with this type of arrival process, one-slot service times and
strict priority scheduling is, for instance, studied in [15]. Adopting some concrete
values for the parameters of the arrival process, the results of [15] can be used
to calculate w̄j(0) and w̄j(1) (j = 1, 2). For N = 16, λT = 0.9, and α = 0.8, for
example, we find that

w̄1(0) = 4.50, w̄2(0) = 0.20,

w̄1(1) = 1.59, w̄2(1) = 3.11. (2)

Then w̄T = w̄1(·) + w̄2(·) = 4.70 and the intervals Ω1 and Ω2, defined in the
previous section, equal [1.59, 4.5] and [0.2, 3.11], respectively.

As objective function for our first example, we add two logistic functions:

f1(w̄1(β), w̄2(β)) ,
1

1 + e−2w̄1(β)+8
+

1

1 + e−2w̄2(β)+3
. (3)
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Fig. 2. Comparison between the objective function f1(w̄1(β), w̄2(β)) and f∗
1 (w̄2)
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Fig. 3. Comparison between the objective function f2(w̄1(β), w̄2(β)) and f∗
2 (w̄2)

Applying the framework of the previous section and using the values of (2) then
yields f1(w̄1(β), w̄2(β)) in terms of w̄2(β) only, i.e.,

f∗1 (w̄2) =
1

1 + e2w̄2−1.4
+

1

1 + e−2w̄2+3
. (4)

This function is plotted in Fig. 2b. In Fig. 2a, f1(w̄1(β), w̄2(β)) is plotted as a
function of β; this figure results from a Monte-Carlo simulation over one million
slots (see further for more details), as it is notoriously complex to find analytical
results for w̄2(β). We see from the figures that both graphs have equal char-
acteristics. Both graphs, for instance, have the same number of minima (i.e.,
one). Also, the ranges of both graphs are the same. So, f∗1 (w̄2) helps identifying
the minimum value of the objective function and determining how much this
value differs from the values in the endpoints. As opposed to f1(w̄1(β), w̄2(β)),
however, we can plot f∗1 (w̄2) right away.

Nevertheless, we cannot conclude from the behaviour of f∗1 (w̄2) at what β-
value this minimum occurs (say βmin). We only know that w̄2(βmin) = 1.1 at F =
0.62. So for instance if we are satisfied with the objective function within 2% of
its minimum (i.e. F smaller than 0.6324), we then argue that we need w̄2 to be in
the interval [0.9, 1.3]. This subsequently is the stopping criterium for a simulation
or approximation procedure on the function w̄2(β). As can be seen from Fig. 2a,
the procedure should result in a βopt value in the interval [0.71, 0.77], as to have

a value for the objective function within 2% of the minimum.



As a second example, we examine the objective function

f2(w̄1(β), w̄2(β)) , (0.5w̄1(β))2 + (1.3w̄2(β))2. (5)

Applying the framework of Sect. 2 and using the values in (2) then leads to

f∗2 (w̄2) = (2.35− 0.5w̄2)2 + (1.3w̄2)2. (6)

We know from the theory of [13] that f2(w̄1(β), w̄2(β)) will have a minimum
different from the endpoints β = 0 or β = 1, because of the convex character of
the squaring in the objective function. Plots for this second example are found
in Fig. 3. Function f∗2 (w̄2) provides us with the value of the objective function
in its minimum (see Fig. 3b). The difference between the value of the objective
function at β = 0 (5.13) and the minimum value (4.81) is perhaps not worth
the effort to search for βmin (the difference is 6.6%). Fig. 3b can thus be used
in advance to decide whether significant gain can be won by searching βmin

compared to using the priority cases β = 0 or β = 1.
If, on the other hand, we make the same reasoning as in the previous exam-

ple, thus allowing at most 2% deviation of the minimum, we need the objective
function F to be smaller than 4.90 and consequently w̄2 in [0.38, 0.83]. An accom-
panying simulation/approximation method should then result in a βopt-value in

the interval [0.44, 0.69].
The reasoning done here can be done for an arbitrarily complex objective

function in w̄j(β). Indeed, every objective function minimization problem can
be translated to a problem of finding the corresponding β for a certain perfor-
mance vector (with or without some error margin). This effectively simplifies
procedures; we will come back to this in Sect. 5.

Note: Critical for this method is the availability of the values for w̄j(0) and
w̄j(1) (j = 1, 2). However, it does not matter how these values are obtained. For
strict priority systems, a lot of analytical results are available; this is, for instance,
the case for the arrival and service processes we have used in the examples
above (see [15]). For more complex arrival and/or service processes, this is not
necessarily the case. To still obtain accurate values for w̄j(0) and w̄j(1) (j = 1, 2),
we can, for example, simulate the system for β = 0 and β = 1 only.

4 Framework Application

In this section, we address another important issue, namely the selection of
an objective function and in particular the influence of this selection on the
optimum. In a first step, a network operator chooses the type of relation of each
performance characteristic in the objective function. When equal increments for
high or low values should have an equal influence on the objective function, a
linear relation can be used. The behaviour of other types of relations can easily
be derived from a plot of the corresponding function. Other examples are a
squared relation (as in f2, see (5)) or a logistic one (as in f1, see (3)). This
choice of relation is closely related to the relation between QoS and QoE [4] and
the choice of utility functions [7,8]. A second question for the operator is how to



weigh the performance of both classes. An answer to this question is less clear
and in most cases more arbitrarily chosen. In the next paragraphs, we derive a
method the operator can use to do a sensitivity analysis on these weights. This
way, he can assess the impact of his choice on the behaviour and the resulting
minimum of the objective function.

Following the reasoning above, we propose the following template for the
objective function:

F (γ, β) = γg1(w̄1(β)) + (1− γ)g2(w̄2(β)), (7)

whereby other characteristics can be achieved by incorporating them in gj as
noted before. The parameter γ, assumed to be in the interval [0, 1], serves as
weight parameter, on which we want to do our sensitivity analysis. When γ = 0,
the objective function only takes into account w̄2(β); when γ = 1, only w̄1(β)
plays a role.

The exposition in the previous sections allows us to study this objective
function for a specific value of γ. In [13], we already studied a subclass of this
kind of objective functions. The analysis there was limited to increasing gj that
were either both linear, convex or concave. We proved that for linear or concave
gj the optimal β-value is always one of the endpoints (i.e., β = 0 or β = 1). For
convex gj , on the other hand, we have found that for certain values of γ the
objective function reaches a minimum for some β different from 0 and 1.

In [13], we were able to study the objective function for all γ in one effort,
but we were limited to increasing functions gj . Now we generalize the results
of [13], allowing all functions gj . The function

φ(β) ,
g′2(w̄2(β))

g′2(w̄2(β)) + g′1(w̄1(β))
, (8)

defined in [13], plays a key role.

Theorem 1. Assume gj is continuously differentiable in Ωj. Then γ = φ(β) if

and only if (iff) ∂F
∂β (γ, β) = 0. 4

Proof. From (7), we find that ∂F
∂β (γ, β) = 0 is equivalent with

[g′2(w̄2(β))− γ(g′1(w̄1(β)) + g′2(w̄2(β)))]w̄′2(β) = 0, (9)

where we have used that w̄′1(β) = −w̄′2(β), see Property 1. According to Prop-
erty 2 (w̄′2(β) > 0) and (9), this leads to

γ = φ(β). (10)

β-values for which φ(β) = γ are the critical points of the objective function
F (γ, β). Critical points can be either extrema or inflection points with a hori-
zontal asymptote.

For simplicity, we assume φ(β) to be continuous. Discontinuities only occur
for β-values for which g′2(w̄2(β)) = −g′1(w̄1(β)). For these β-values,

∂F

∂β
(γ, β) = g′2(w̄2(β))w̄′2(β). (11)

4 In fact, Theorem 1 is a generalization of Lemma 1 in [13].



As w̄′2(β) is positive, the objective function will increase or decrease like g2. We
will disregard these cases in the remainder, as the discontinuities in φ(β) do not
lead to special cases for F (γ, β). The extensions are straightforward but only
result in more involved expressions.

To be able to distinguish extrema from inflection points, we need higher-order
derivatives of the objective function. These will allow us to perform the higher-
order derivative test on the objective function. Therefore, we extend Theorem 1.

Theorem 2. Assume gj is n times continuously differentiable in Ωj. Then

φ(i−1)(β) = 0,∀i = 2, ..., n, and φ(β) = γ iff ∂iF
∂βi (φ(β), β) = 0,∀i = 1, ..., n.

Here, φ(j)(β) denotes the j-th derivative of φ(β).

Proof. (by induction) The base case n = 1 follows from Theorem 1. For the
induction hypothesis, assume that φ(β) = γ and φ(i−1)(β) = 0 for i = 2, ..., n−1

iff ∂iF
∂βi (φ(β), β) = 0 for i = 1, ..., n− 1. To complete the theorem, we prove that

φ(n−1)(β) = 0 iff ∂nF
∂βn (φ(β), β) = 0. We find that

∂nF

∂βn
=

∂n−1

∂βn−1

(
∂F

∂β

)
=

∂n−1

∂βn−1

(
w̄′2(β)

(
g′1(w̄1(β)) + g′2(w̄2(β))

)(
φ(β)− γ

))
,

where we have used (9). Define, furthermore, ∆(γ, β) as φ(β) − γ and χ(β) as
w̄′2(β)

(
g′1(w̄1(β)) + g′2(w̄2(β))

)
. Then we can write

∂nF

∂βn
=

∂n−1

∂βn−1

(
χ(β)∆(γ, β)

)
=

n−1∑
r=0

(
n− 1

r

)
χ(n−1−r)(β)

∂r∆

∂βr
(γ, β). (12)

We know from the induction hypothesis that ∂r∆
∂βr (γ, β) = ∂r(φ(β)−γ)

∂βr = ∂rφ(β)
∂βr =

φ(r)(β) = 0, r = 1, ..., n− 2, and that ∆(γ, β) = 0. This yields

∂nF

∂βn
=

(
n− 1

n− 1

)
χ(0)(β)

∂n−1∆

∂n−1β
(γ, β) = w̄′2(β)

(
g′1(w̄1(β)) + g′2(w̄2(β))

)
φ(n−1)(β).

Strict monotonicity of w̄2(β) and the continuity assumption of φ(β) that we
made earlier prove that φ(n−1)(β) = 0 iff ∂nF

∂βn (φ(β), β) = 0.

The next corollary follows directly from Theorem 2:

Corollary 1. If γ = φ(β), φ(1)(β) = · · · = φ(n)(β) = 0 and φ(n+1)(β) 6= 0, then
F (γ, β) has a local extremum at β if n is even and an inflection point at β if n
is odd.

With this corollary, we can determine the behaviour of F (γ, β) by studying the

behaviour of φ(β). Suppose, for instance, that φ(β) has one inflection point β̂

with horizontal tangent. Then φ(2)(β̂) = φ(1)(β̂) = 0 and φ(3)(β̂) 6= 0, and, as a

consequence, F (γ, β) has an extremum at β̂ when γ = φ(β̂).

Unfortunately, we do not have a formula for φ(β), as we do not have explicit
analytical results for the functions w̄j(β). This is where the framework of Sect. 2
comes into play. In particular, the function φ(β) can be translated into a function
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Fig. 4. For F3: Comparison between φ(β) and φ∗(w̄2)

in terms of w̄2(β) instead of β (i.e. φ∗(w̄2) in the remainder). As there is a one-
to-one mapping between the values in Ω2 and the values in [0, 1], we find that

φ∗(w̄2) =
g′2(w̄2)

g′2(w̄2) + g′1(w̄T − w̄2)
. (13)

Using the framework, the previous corollary is reformulated as follows:

Corollary 2. If γ = φ∗(w̄2), φ∗(1)(w̄2) = · · · = φ∗(n)(w̄2) = 0 and φ∗(n+1)(w̄2) 6=
0, then F ∗(γ, w̄2) has a local extremum at w̄2 if n is even and an inflection point
at w̄2 if n is odd. As w̄2(β) is bijective on [0, 1], F (γ, β) also has a local extremum
at β if n is even and an inflection point at β if n is odd.

Hereby, we defined F ∗(γ, w̄2) analogously to the other functions marked with a
star, using the framework presented in Sect. 2.

As in Sect. 3, we have composed figures to compare φ(β) (see Fig. 4a) with
φ∗(w̄2) (see Fig. 4b). For these figures, we have used the objective function

F3(γ, β) = γ(0.5
√

2w̄1(β))2 + (1− γ)(1.3
√

2w̄2(β))2. (14)

and the same arrival and service processes as in Sect. 3. It should be noticed that
F3(0.5, β) = f2(w̄1(β), w̄2(β)) (see (5)); we refer to this equivalence later. We can
draw similar conclusions as in the previous section. For instance, we can see that
both graphs have the same range.

Using the aforementioned corollary, we see that for γ ∈ [0.1, 0.83] (obtained
using strict priority scheduling results only, see [13]), F3(γ, β) reaches an ex-
tremum at a β-value different from 0 or 1. In particular for γ ∈ [0.1, 0.83], there

is a β-value and corresponding w̄2(β)-value, say β̂ and w̄2(β̂), respectively, for

which γ = φ(β) = φ∗(w̄2(β)). Visually, this β̂ and w̄2(β̂) can be presented in the
Cartesian coordinate systems (β, φ(β)) and (w̄2, φ

∗(w̄2)), by drawing a horizontal
line at the chosen value of γ (see Fig. 4b); the intersection points of the horizontal

lines and curves of φ(β) and φ∗(w̄2) then yield β̂ and w̄2(β̂), respectively.

Now according to Theorem 2, ∂F3

∂β (γ, β̂) = 0 and we have an extremum at

β̂ if ∂2F3

∂β2 (γ, β̂) 6= 0 or, equivalently, if φ(1)(β̂) 6= 0. From Fig. 3, where we have

depicted F3(γ, β) for γ = 0.5, we can see that F3(γ, β) is decreasing at β = 0

for γ ∈ [0.1, 0.83]. As we have a β̂ for which γ = φ(β) in that interval, F3(γ, β)
has an extremum, which is necessarily a minimum. Summarized, the couples
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Fig. 5. For F4: Comparison between φ(β) and φ∗(w̄2)

(φ(β), β), indicated by the curve in the figure, are parameter combinations for
(γ, β) that minimize the objective function. For γ < 0.1, there is no β for which
γ = φ(β) and thus, according to Theorem 1, F3(γ, β) has no extremum between
0 and 1. Since F3(γ, β) is increasing at β = 0, F3(γ, β) is increasing w.r.t. all
β. Analogously, for γ > 0.83, the objective function is decreasing w.r.t β.

As a last example, we look at the objective function

F4(γ, β) =
γ

1 + e−3w̄1(β)+9
+

1− γ
1 + e−4w̄2(β)+7

. (15)

Using the same arrival and service processes and the same arrival process pa-
rameters as before, we depict the corresponding φ(β) in Fig. 5a and φ∗(w̄2)
in Fig. 5b. Remember that the former is obtained via simulations, while the
latter can be drawn directly. We can make the same reasoning as before. φ(β)
and φ∗(w̄2) will have intersection points with horizontal lines at γ ∈ [0.2, 0.58]
only. For a γ-value in this interval, Theorem 1 dictates that F4(γ, β) will have
extrema or inflection points. Using the corollary of Theorem 2, we know that
inflection points only occur when also φ′(β) = 0, so when φ(β) and φ∗(w̄2) have
an extremum. For the example at hand, this occurs for γ = 0.58 and w̄2 = 1.8
(and from simulation, β = 0.82).

At w̄2 = 0.2 (β = 0), F ∗4 (γ, w̄2) is decreasing if γ > 0.2 and increasing if
γ < 0.2 (this can easily be seen from (15)). So if we take γ = 0.4, we find
that F ∗4 (γ, w̄2) is decreasing at w̄2 = 0.2. Furthermore, F ∗4 (0.4, w̄2) reaches an
extremum at w̄2 = 1.1 because at that w̄2-value φ∗(w̄2) intersects with a horizon-
tal line at 0.4 (see Fig. 5b). This extremum is necessarily a minimum. For higher
values of w̄2, F ∗4 (γ, w̄2) is increasing again. At w̄2 = 2.7, we once more have a
point of intersection between φ∗(w̄2) and the horizontal line at 0.4, and, hence,
F ∗4 (γ, w̄2) has a second extremum, in this case a maximum. These conclusions
can be verified in Fig. 6, where we have plotted F ∗4 (0.4, w̄2).

Using similar arguments for other values of γ, we constructed an annotated
version of Fig. 5a in Fig. 7. In this figure, the arrows indicate the behaviour
of F4(γ, β) for the (γ, β)-values in that area. We see that F4(γ, β) is decreasing
above the curve of φ(β) and increasing under the curve. In fact, if we draw a path
in the unit square (a collection of couples for (γ, β)), we know that the behaviour
of the objective function is indicated by the arrows in the figure. Furthermore,
the sign (and thus the behaviour) of ∂F4

∂β (γ, β) will only change if the path
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intersects with φ(β). At the intersection point, the sign will change and the
objective function will have an extremum or an inflection point. We can thus
conclude that from a plot of φ∗(w̄2), we can determine the complete behaviour
of the objective function without running any simulation or relying on possibly
inaccurate approximate expressions for the performance characteristics.

In Fig. 8, finally, we have graphs of F4(γ, β), for several γ; they are obtained
through simulation (see further for more details). We have chosen a γ-value from
each area in Fig. 7 and we see that the graphs in Fig. 8 confirm our analysis. For
γ = 0.5, for instance, we see that F4(γ, β) first reaches a minimum and later a
maximum; for γ = 0.58, F4(γ, β) has an inflection point. We see from this study
that the behaviour of the objective function largely depends on the coefficient γ
in that function. Using our theorems presented here, these different behaviours
can be seen at a glance from a graph of φ∗(w̄2).

Let us now return to the sensitivity analysis. From Fig. 5b, an analist can
see what the impact of a variation in γ will be on w̄2 (and subsequently also on
the value of the objective function). An annotated version as presented in Fig. 7
easily shows how the objective function behaves for different γ. This figure can be
used to make a selection of different values of γ for which the objective function
can be studied more closely, as was done in Fig. 8. The mapping from w̄2 to β,
however, is still unknown. To get this information, one needs to resort to, e.g.,
simulation. In the next section, we show how this can be done efficiently.

5 Achieving a Specific Performance Vector

In this section, we combine the results obtained in the previous sections to
optimize the simulation and optimization procedure. We will optimize objective



functions of the form of (7). We do this by optimizing for 101 values of γ equally
spaced in [0, 1]. We compare several techniques and see how they influence the
simulation effort and execution time. Lastly, we give some closing remarks on
how the procedure could be sped up even further. If you only need to optimize a
simple objective function (without changing the γ parameter) the optimization
is even faster, though completely analog to the one presented here.

For all simulations, we used one slot service times and the arrival process pre-
sented in Sect. 3. We used Monte-Carlo simulations over 108 slots. This length
of trajectory is long enough to minimize bias and variance from the transient
behaviour (before reaching steady state) and the selection of the specific trajec-
tory. To guarantee, however, that Property 2 is fulfilled we use identical arrival
and decision variable trajectories, i.e., in each M -th slot of every simulation the
same number of packets arrives and the same decision variable to choose a queue
to serve (which then needs to be compared to β) is used. We achieve this by ini-
tializing the random generator with the same seed for each simulation. This is
the well known method of common random numbers (CRN) [1,11].

For the numerical results in this section, we optimized the objective function
F3. During the simulation runs for different γ, we only do one simulation for
a given value of β. A table in memory holds the already simulated values for
β and their results. This is a first way to speed up the process. As we use the
CRN-method, each simulation for the same weight β will give us the same result.

A first, albeit naive, method is to just simulate equally spaced β’s in [0, 1].
We call this the brute force method. In a second method, we use a golden section
search on the objective function, like we used in [13]. This method, however, is
only usable for objective functions known to have a single extremum and this
extremum being a minimum. This is, for instance, the case for F3 with convex gj .

A third method follows from Sect. 2. We know that it is not needed to
work directly with the objective function. From the objective function, the op-
timal value of w̄2 can be calculated. Subsequently, the corresponding value of β
to achieve this value of w̄2 needs to be obtained by simulation. Knowing that
w̄2(β) is monotonically increasing, we can use a simplified version of the golden
section search method (mentioned in the previous paragraph). In this method,
the algorithm maintains an interval [A,B] for β (starting from [0, 1]) wherein the
optimal solution can be found. Each iteration, the algorithm chooses a point C in
the interval (according to the golden ratio). This point is subsequently simulated
whereafter the algorithm updates the interval to either [A,C] or [C,B].

We can use two different stopping criteria. The first one is the β-precision.
This is the value B − A; if this value is small enough, we stop the algorithm
and use the average (A+B)/2 as value for βopt. Another option, called the F -
precision, is to stop the simulation once we found a β that leads to a reasonable
value of F . This F -precision is the percentage deviation from the minimum of the
objective function F (which we can calculate in advance, as shown in Sect. 2).

The computational effort of the different simulation methods for this specific
case can be found in Table 1. Cases can be engineered where the efficiency order
of these methods is different; however, these cases are exceptional and need to be
tailor-made. Furthermore, golden section search on F has a limited usability as
it can only be used for objective functions with a single extremum, specifically



Table 1. Simulation times

Method Stopping criterium Needed simulations

Brute force β-precision: 0.0001 10001

Golden section on F β-precision: 0.0001 897

Golden section on w̄2 β-precision: 0.0001 617

Golden section on w̄2 β-precision: 0.0001 12

or F -precision: 1%

a minimum. It is clear that in general the more information and knowledge you
have about the queueing system and objective function, the less simulations are
needed. This often leads to complex algorithms that are only usable in a limited
number of cases. The framework presented here, being as simple and general as
it is, leads to large simulation gains without significant increase in complexity.

The methods presented here can be improved even further. Instead of using
the golden section search in its purest form, the table with the already simulated
β’s could be used to select a starting interval [A,B] after which golden section
search could be used to further refine the result. This would lead to faster con-
vergence. Another method (variation on golden section search), is to use multiple
cores and select multiple C’s. This way the interval [A,B] will shrink much faster.
Lastly, one could also vary the number of simulated slots as we get further into
the algorithm, simulating less slots (and having a rougher estimation) when the
interval [A,B] is still large. A word of caution however is in order here, as this
also induces extra variance. This variance could cause the algorithm to exclude
the minimum. Using the presented insights the algorithm can easily detect when
this happens and act accordingly.

6 Conclusions

In this paper, we have shown that no simulations or complex approximation
techniques are needed for two-class GPS to study a generic objective function in
terms of mean performance characteristics. With our framework, we are able to
calculate the number of local extrema and the values of the objective function
in these extrema. In this way, we are able to characterize the entire behaviour of
the objective function w.r.t. the GPS weights. Our framework is based on results
of strict priority scheduling and some specific properties of two-class GPS. To
find the weights that optimize GPS, we still need to resort to a simulation
approach. However, knowing the behaviour of the objective function beforehand
can aid immensely in this optimization process.
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