36,244 research outputs found
Leeds Edible Schools Sustainability Network
There is a growing interest in both urban agriculture and the issue of sustainability, as framed in terms of climate change, landscape, economic uncertainty and resource shortages, while issues around child health and wellbeing are increasingly causing concern. Education, especially in terms of sustainability teaching and the production of food by schools on school premises is key. The Leeds Edible Schools Sustainability Network is, at this date, an un-constituted, informal group of organisations and academics, all based or active within the Leeds district, who share core values around the wellbeing and sustainability agenda and who are all, in various ways, involved in supporting educational establishments and related organisations in the growing (often on school premises) and consumption of local food, the promotion of resilient and healthy practices, including outdoor work and teaching about healthy school food, and the development of effective education around the topic of sustainability
Delayed surgical debridement in pediatric open fractures: a systematic review and meta-analysis.
Purpose: Open fractures are considered orthopedic emergencies that are traditionally treated with surgical debridement within 6 h of injury to prevent infection. However, this proclaimed â6-h ruleâ is arbitrary and not based on rigorous scientific evidence. The aim of our study was to systematically review the literature that compares late (>6 h from the time of injury) to early (<6 h from the time of injury) surgical debridement of pediatric open fractures.
Methods: We searched several databases from 1946 to 2013 for any observational or experimental studies that evaluated late and early surgical debridement of pediatric open fractures. We performed a meta-analysis using a random effects model to pool odds ratios for a comparison of infection rates between children undergoing late versus early surgical debridement. We also investigated the infection rates in upper- and lower-limb pediatric open fractures. Descriptive, quantitative, and qualitative data were extracted.
Results: Of the 12 articles identified, three studies (retrospective cohort studies) were eligible for the meta-analysis, encompassing a total of 714 open fractures. The pooled odds ratio (OR = 0.79) for infection between late and early surgical debridement was in favor of late surgical debridement but was not statistically significant (95 % CI 0.32, 1.99; p = 0.38, I 2 = 0 %). No significant difference in infection rate was detected between pediatric open fractures in the upper and lower limbs according to the time threshold in the included studies (OR = 0.72, 95 % CI 0.29, 1.82; p = 0.40, I 2 = 0 %).
Conclusions: The cumulative evidence does not, at present, indicate an association between late surgical debridement and higher infection rates in pediatric open fractures. However, initial expedient surgical debridement of open fractures in children should always remain the rule. Thus, multi-center randomized controlled trials or prospective cohort studies will be able to answer this question with more certainty and a higher level of evidence
Characterization Of Thermal Stresses And Plasticity In Through-Silicon Via Structures For Three-Dimensional Integration
Through-silicon via (TSV) is a critical element connecting stacked dies in three-dimensional (3D) integration. The mismatch of thermal expansion coefficients between the Cu via and Si can generate significant stresses in the TSV structure to cause reliability problems. In this study, the thermal stress in the TSV structure was measured by the wafer curvature method and its unique stress characteristics were compared to that of a Cu thin film structure. The thermo-mechanical characteristics of the Cu TSV structure were correlated to microstructure evolution during thermal cycling and the local plasticity in Cu in a triaxial stress state. These findings were confirmed by microstructure analysis of the Cu vias and finite element analysis (FEA) of the stress characteristics. In addition, the local plasticity and deformation in and around individual TSVs were measured by synchrotron x-ray microdiffraction to supplement the wafer curvature measurements. The importance and implication of the local plasticity and residual stress on TSV reliabilities are discussed for TSV extrusion and device keep-out zone (KOZ).Microelectronics Research Cente
Recommended from our members
Transverse field-induced nucleation pad switching modes during domain wall injection
We have used magnetic transmission soft X-ray microscopy (M-TXM) to image in-field magnetization configurations of patterned Ni80F20 domain wall "nucleation pads" with attached planar nanowires. Comparison with micromagnetic simulations suggests that the evolution of magnetic domains in rectangular injection pads depends on the relative orientation of closure domains in the remanent state. The magnetization reversal pathway is altered by the inclusion of transverse magnetic fields. These different modes explain previous results of domain wall injection into nanowires
Thermomechanical Characterization And Modeling For TSV Structures
Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.Microelectronics Research Cente
Cloud and boundary layer interactions over the Arctic sea ice in late summer
Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud- atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near-surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a weeklong period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75%of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, backtrajectory analyses suggest that these warm air masses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these air masses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixedlayer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below
Are lip prints hereditary? A systematic review
Hereditary lip prints have been studied by several researchers. However, the literature shows no consensus among the scientific community regarding this topic. Therefore, the aim of this study was to conduct a systematic review to gather evidence to clarify whether the surface structure of lip prints is hereditary and, consequently, if a familial relationship between individuals can be established through the analysis of lip prints. The systematic review was performed following the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines. A bibliographic survey was conducted in PubMed, Scopus, and Web of Science databases, restricted to articles published between 2010 and 2020. Studies were selected according to eligibility criteria, and then the study data were collected. The risk of bias of each study was assessed and applied as additional inclusion or exclusion criteria. The results of the articles eligible for analysis were synthesized by a descriptive approach. In the seven included studies, methodological variations, including the definition of similarity, that contribute to the heterogeneity of results were identified. The data gathered allowed to conclude that there is no strong scientific evidence to support the hypothesis of the existence of heredity in the surface structure of lip prints, since it was not proven that similarities between parents and children occur systematically in all families.Open access funding provided by FCT|FCCN (b-on). The co-author Caldas IM was financed by the R&D Unit Centre for Functional Ecology-Science for People and the Planet (CFE), with reference UIDB/04004/2020, financed by FCT/MCTES through national funds (PIDDAC)
- âŠ