189 research outputs found

    Guillain-Barré syndrome: a century of progress

    Get PDF
    In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS

    Automatic and manual segmentation of the piriform cortex: Method development and validation in patients with temporal lobe epilepsy and Alzheimer's disease

    Get PDF
    The piriform cortex (PC) is located at the junction of the temporal and frontal lobes. It is involved physiologically in olfaction as well as memory and plays an important role in epilepsy. Its study at scale is held back by the absence of automatic segmentation methods on MRI. We devised a manual segmentation protocol for PC volumes, integrated those manually derived images into the Hammers Atlas Database (n = 30) and used an extensively validated method (multi-atlas propagation with enhanced registration, MAPER) for automatic PC segmentation. We applied automated PC volumetry to patients with unilateral temporal lobe epilepsy with hippocampal sclerosis (TLE; n = 174 including n = 58 controls) and to the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 151, of whom with mild cognitive impairment (MCI), n = 71; Alzheimer's disease (AD), n = 33; controls, n = 47). In controls, mean PC volume was 485 mm3 on the right and 461 mm3 on the left. Automatic and manual segmentations overlapped with a Jaccard coefficient (intersection/union) of ~0.5 and a mean absolute volume difference of ~22 mm3 in healthy controls, ~0.40/ ~28 mm3 in patients with TLE, and ~ 0.34/~29 mm3 in patients with AD. In patients with TLE, PC atrophy lateralised to the side of hippocampal sclerosis (p < .001). In patients with MCI and AD, PC volumes were lower than those of controls bilaterally (p < .001). Overall, we have validated automatic PC volumetry in healthy controls and two types of pathology. The novel finding of early atrophy of PC at the stage of MCI possibly adds a novel biomarker. PC volumetry can now be applied at scale

    Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Drosophila </it>Groucho and its human Transducin-like-Enhancer of Split orthologs (TLEs) function as transcription co-repressors within the context of Wnt signaling, a pathway with strong links to cancer. The current model for how Groucho/TLE's modify Wnt signaling is by direct competition with β-catenin for LEF/TCF binding. The molecular events involved in this competitive interaction are not defined and the actions of Groucho/TLEs within the context of Wnt-linked cancer are unknown.</p> <p>Methods</p> <p>We used <it>in vitro </it>protein interaction assays with the LEF/TCF family member LEF-1, and <it>in vivo </it>assays with Wnt reporter plasmids to define Groucho/TLE interaction and repressor function.</p> <p>Results</p> <p>Mapping studies reveal that Groucho/TLE binds two regions in LEF-1. The primary site of recognition is a 20 amino acid region in the Context Dependent Regulatory domain. An auxiliary site is in the High Mobility Group DNA binding domain. Mutation of an eight amino acid sequence within the primary region (RFSHHMIP) results in a loss of Groucho action in a transient reporter assay. <it>Drosophila </it>Groucho, human TLE-1, and a truncated human TLE isoform Amino-enhancer-of-split (AES), work equivalently to repress LEF-1•β-catenin transcription in transient reporter assays, and these actions are sensitive to the HDAC inhibitor Trichostatin A. A survey of Groucho/TLE action in a panel of six colon cancer cell lines with elevated β-catenin shows that Groucho is not able to repress transcription in a subset of these cell lines.</p> <p>Conclusion</p> <p>Our data shows that Groucho/TLE repression requires two sites of interaction in LEF-1 and that a central, conserved amino acid sequence within the primary region (F S/T/P/xx y I/L/V) is critical. Our data also reveals that AES opposes LEF-1 transcription activation and that both Groucho and AES repression require histone deacetylase activity suggesting multiple steps in Groucho competition with β-catenin. The variable ability of Groucho/TLE to oppose Wnt signaling in colon cancer cells suggests there may be defects in one or more of these steps.</p

    Tumour-draining axillary lymph nodes in patients with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC): the crucial contribution of immune cells (effector, regulatory) and cytokines (TH1, TH2) to immune-mediated tumour cell death induced by NAC

    Get PDF
    Background The tumour microenvironment consists of malignant cells, stroma and immune cells. In women with large and locally advanced breast cancers (LLABCs) undergoing neoadjuvant chemotherapy (NAC), tumour-infiltrating lymphocytes (TILs), various subsets (effector, regulatory) and cytokines in the primary tumour play a key role in the induction of tumour cell death and a pathological complete response (pCR) with NAC. Their contribution to a pCR in nodal metastases, however, is poorly studied and was investigated. Methods Axillary lymph nodes (ALNs) (24 with and 9 without metastases) from women with LLABCs undergoing NAC were immunohistochemically assessed for TILs, T effector and regulatory cell subsets, NK cells and cytokine expression using labelled antibodies, employing established semi-quantitative methods. IBM SPSS statistical package (21v) was used. Non-parametric (paired and unpaired) statistical analyses were performed. Univariate and multivariate regression analyses were carried out to establish the prediction of a pCR and Spearman’s Correlation Coefficient was used to determine the correlation of immune cell infiltrates in ALN metastatic and primary breast tumours. Results In ALN metastases high levels of TILs, CD4+ and CD8+ T and CD56+ NK cells were significantly associated with pCRs.. Significantly higher levels of Tregs (FOXP3+, CTLA-4+) and CD56+ NK cells were documented in ALN metastases than in the corresponding primary breast tumours. CD8+ T and CD56+ NK cells showed a positive correlation between metastatic and primary tumours. A high % CD8+ and low % FOXP3+ T cells and high CD8+: FOXP3+ ratio in metastatic ALNs (tumour-free para-cortex) were associated with pCRs. Metastatic ALNs expressed high IL-10, low IL-2 and IFN-ϒ. Conclusions Our study has provided new data characterising the possible contribution of T effector and regulatory cells and NK cells and T helper1 and 2 cytokines to tumour cell death associated with NAC in ALNs

    The Wnt-dependent signaling pathways as target in oncology drug discovery

    Get PDF
    Our current understanding of the Wnt-dependent signaling pathways is mainly based on studies performed in a number of model organisms including, Xenopus, Drosophila melanogaster, Caenorhabditis elegans and mammals. These studies clearly indicate that the Wnt-dependent signaling pathways are conserved through evolution and control many events during embryonic development. Wnt pathways have been shown to regulate cell proliferation, morphology, motility as well as cell fate. The increasing interest of the scientific community, over the last decade, in the Wnt-dependent signaling pathways is supported by the documented importance of these pathways in a broad range of physiological conditions and disease states. For instance, it has been shown that inappropriate regulation and activation of these pathways is associated with several pathological disorders including cancer, retinopathy, tetra-amelia and bone and cartilage disease such as arthritis. In addition, several components of the Wnt-dependent signaling pathways appear to play important roles in diseases such as Alzheimer’s disease, schizophrenia, bipolar disorder and in the emerging field of stem cell research. In this review, we wish to present a focused overview of the function of the Wnt-dependent signaling pathways and their role in oncogenesis and cancer development. We also want to provide information on a selection of potential drug targets within these pathways for oncology drug discovery, and summarize current data on approaches, including the development of small-molecule inhibitors, that have shown relevant effects on the Wnt-dependent signaling pathways

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF
    corecore