31 research outputs found

    Resource niches of co-occurring invertebrate species at an offshore wind turbine indicate a substantial degree of trophic plasticity

    Get PDF
    Offshore wind farms (OWFs) in the North Sea are proliferating, causing alterations in local ecosystems by adding artificial hard substrates into naturally soft-bottom areas. These substrates are densely colonized by fouling organisms, which may compete for the available resources. While the distribution of some species is restricted to specific parts of the turbine, others occur across depth zones and may therefore face different competitive environments. Here we investigate the trophic niches of seven invertebrate species: three sessile (Diadumene cincta, Metridium senile, and Mytilus edulis), one hemi-sessile (Jassa herdmani) and three mobile species (Ophiothrix fragilis, Necora puber, and Pisidia longicomis) that occur in multiple depth zones. We hypothesized that these species would be trophic generalists, exhibiting trophic plasticity by selecting different resources in different depth zones, to cope with the different competitive environments in which they occur. We analyzed delta C-13 and delta N-15 of these species and their potential resources across depth zones. Our results show that most of these invertebrates are indeed trophic generalists which display substantial trophic plasticity, selecting different resources in different zones. Degree of trophic plasticity was not related to mobility of the species. There are two possible explanations for these dietary changes with depth: either consumers switch diet to avoid competition with other (dominant) species, or they benefit from the consumption of a non-limiting resource. Only Diadumene cincta was a trophic specialist that consumed suspended particulate organic matter (SPOM) independent of its zone of occurrence. Altogether, trophic plasticity appears an important mechanism for the co-existence of invertebrate species along the depth gradient of an offshore wind turbine

    Biogeography and community structure of abyssal scavenging Amphipoda (Crustacea) in the Pacific Ocean

    Get PDF
    In 2015, we have collected more than 60,000 scavenging amphipod specimens during two expeditions to the Clarion-Clipperton fracture Zone (CCZ), in the Northeast (NE) Pacific and to the DISturbance and re-COLonisation (DisCOL) Experimental Area (DEA), a simulated mining impact disturbance proxy in the Peru basin, Southeast (SE) Pacific. Here, we compare biodiversity patterns of the larger specimens (>15mm) within and between these two oceanic basins. Nine scavenging amphipod species are shared between these two areas, thus indicating connectivity. We further provide evidence that disturbance proxies seem to negatively affect scavenging amphipod biodiversity, as illustrated by a reduced alpha biodiversity in the DEA (Simpson Index (D)=0.62), when compared to the CCZ (D=0.73) and particularly of the disturbance site in the DEA and the site geographically closest to it. Community compositions of the two basins differs, as evidenced by a Non-Metric Dimensional Scaling (NMDS) analysis of beta biodiversity. The NMDS also shows a further separation of the disturbance site (D1) from its neighbouring, undisturbed reference areas (D2, D3, D4 and D5) in the DEA. A single species, Abyssorchomene gerulicorbis, dominates the DEA with 60% of all individuals

    Benthic production and energy export from man-made structures to natural soft bottoms: repercussions for food provisioning services?

    Get PDF
    Over the last decade, the installation and operation of extensive offshore wind farms led to a substantial increase in artificial substrates in the North Sea. Man-made structures (MMS) such as wind turbines represent additional hard-substrate habitats in the areas of the North Sea that are predominantly characterized by soft sediments. Man-made structures, colonised by fouling populations, may have potential effects by additional biomass discharge from MMS on the benthic soft bottom systems. At the same time, many ecosystem goods and services of the North Sea such as long-term carbon storage and natural resources (e.g. for fish, birds, mammals and finally humans) are intimately linked to the benthic system. Benthic invertebrates form the major food source for many commercially exploited fish species and thus the production (i.e. species energy that is turned into biomass) of benthic communities is of direct relevance for the food provisioning ecosystem service. In this study, production was calculated based on species populations as a quantification of energy flow and trophic interactions. The obtained results may thus provide clear signals for status and possible responses of populations and entire ecosystems to the introduction of MMS. The analysis included different datasets from various monitoring programs of offshore wind farms (i.e. the production and biomass of fouling communities and of natural soft-bottom community) from the Southern North Sea over several years. We analysed production changes due to environmental parameters and the presence of the structures in a meta-analysis. The analysis revealed clear modifications in the upper parts of MMSs, where the highest production values and potential biomass export to soft bottoms were detected. The outcome may thus represent a first step to disentangle the potential effects of additional biomass discharge from MMS on the ecological functioning of benthic systems. Future monitoring should therefore focus on specific targeted monitoring, i.e. investigate the cause-effect relationships to understand changes in energy flow and how this might affect (positive-neutral-negative) the food provisioning in marine ecosystems

    Turning off the DRIP (‘Data-rich, information-poor’) – rationalising monitoring with a focus on marine renewable energy developments and the benthos

    Get PDF
    Marine renewable energy developments (MREDs) are rapidly expanding in size and number as society strives to maintain electricity generation whilst simultaneously reducing climate-change linked CO2 emissions. MREDs are part of an ongoing large-scale modification of coastal waters that also includes activities such as commercial fishing, shipping, aggregate extraction, aquaculture, dredging, spoil-dumping and oil and gas exploitation. It is increasingly accepted that developments, of any kind, should only proceed if they are ecologically sustainable and will not reduce current or future delivery of ecosystem services. The benthos underpins crucial marine ecosystem services yet, in relation to MREDs, is currently poorly monitored: current monitoring programmes are extensive and costly yet provide little useful data in relation to ecosystem-scale-related changes, a situation called ‘data-rich, information-poor’ (DRIP). MRED –benthic interactions may cause changes that are of a sufficient scale to change ecosystem services provision, particularly in terms of fisheries and biodiversity and, via trophic linkages, change the distribution of fish, birds and mammals. The production of DRIPy data should be eliminated and the resources used instead to address relevant questions that are logically bounded in time and space. Efforts should target identifying metrics of change that can be linked to ecosystem function or service provision, particularly where those metrics show strongly non-linear effects in relation to the stressor. Future monitoring should also be designed to contribute towards predictive ecosystem models and be sufficiently robust and understandable to facilitate transparent, auditable and timely decision-making

    Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment

    Get PDF
    δ13C of nematode communities in 27 sites was analyzed, spanning a large depth range (from 130 to 2,021 m) in five Antarctic regions, and compared to isotopic signatures of sediment organic matter. Sediment organic matter δ13C ranged from −24.4 to −21.9‰ without significant differences between regions, substrate types or depths. Nematode δ13C showed a larger range, from −34.6 to −19.3‰, and was more depleted than sediment organic matter typically by 1‰ and by up to 3‰ in silty substrata. These, and the isotopically heavy meiofauna at some stations, suggest substantial selectivity of some meiofauna for specific components of the sedimenting plankton. However, 13C-depletion in lipids and a potential contribution of chemoautotrophic carbon in the diet of the abundant genus Sabatieria may confound this interpretation. Carbon sources for Antarctic nematodes were also explored by means of an experiment in which the fate of a fresh pulse of labile carbon to the benthos was followed. This organic carbon was remineralized at a rate (11–20 mg C m−2 day−1) comparable to mineralization rates in continental slope sediments. There was no lag between sedimentation and mineralization; uptake by nematodes, however, did show such a lag. Nematodes contributed negligibly to benthic carbon mineralization
    corecore