27 research outputs found

    Immunoanalytic investigation of grain proteins antigenic for celiac disease patients in an einkorn collection

    Get PDF
    Our study focuses on the complex characterization of a wild and cultivated einkorn collection of the Cereal Gene Bank of Agriculture Research Institute in Hungary, using proteomics, immune analytics and bioinformatics analyses. In a serological ELISA pre-screen of 208 different Triticum monococcum L. ssp. monococcum and Triticum monococcum L. ssp. aegilopoides genotypes with celiac disease samples high diversity was observed in the immune response. Based on the immune analytic results, four genotypes with significantly reduced immune reactivity were selected for detailed proteomics characterization. Our results confirm the benefits of high-throughput/large-scale pre-screening and the use of a complex examination platform to get relevant information about the genetic diversity of celiac disease-relevant proteins in the analyzed einkorn genotypes. These genotypes cannot be incorporated into the daily diet of celiac patients; however, they may represent candidates – especially in combination with enzymatic treatments - to improve the lifestyle of individuals suffering from other clinical conditions like non-celiac wheat sensitivity

    Single-Cell RNA Sequencing of Peripheral Blood Mononuclear Cells From Pediatric Coeliac Disease Patients Suggests Potential Pre-Seroconversion Markers

    Get PDF
    Celiac Disease (CeD) is a complex immune disorder involving villous atrophy in the small intestine that is triggered by gluten intake. Current CeD diagnosis is based on late-stage pathophysiological parameters such as detection of specific antibodies in blood and histochemical detection of villus atrophy and lymphocyte infiltration in intestinal biopsies. To date, no early onset biomarkers are available that would help prevent widespread villous atrophy and severe symptoms and co-morbidities. To search for novel CeD biomarkers, we used single-cell RNA sequencing (scRNAseq) to investigate PBMC samples from 11 children before and after seroconversion for CeD and 10 control individuals matched for age, sex and HLA-genotype. We generated scRNAseq profiles of 9559 cells and identified the expected major cellular lineages. Cell proportions remained stable across the different timepoints and health conditions, but we observed differences in gene expression profiles in specific cell types when comparing patient samples before and after disease development and comparing patients with controls. Based on the time when transcripts were differentially expressed, we could classify the deregulated genes as biomarkers for active CeD or as potential pre-diagnostic markers. Pathway analysis showed that active CeD biomarkers display a transcriptional profile associated with antigen activation in CD4+ T cells, whereas NK cells express a subset of biomarker genes even before CeD diagnosis. Intersection of biomarker genes with CeD-associated genetic risk loci pinpointed genetic factors that might play a role in CeD onset. Investigation of potential cellular interaction pathways of PBMC cell subpopulations highlighted the importance of TNF pathways in CeD. Altogether, our results pinpoint genes and pathways that are altered prior to and during CeD onset, thereby identifying novel potential biomarkers for CeD diagnosis in blood

    Circulating miRNAs as Potential Biomarkers for Celiac Disease Development

    Get PDF
    BACKGROUND & AIMS: Celiac disease (CeD), an immune-mediated disease with enteropathy triggered by gluten, affects ~1% of the general European population. Currently, there are no biomarkers to predict CeD development. MicroRNAs (miRNAs) are short RNAs involved in post-transcriptional gene regulation, and certain disease- and stage-specific miRNA profiles have been found previously. We aimed to investigate whether circulating miRNAs can predict the development of CeD. METHODS: Using next-generation miRNA-sequencing, we determined miRNAs in >200 serum samples from 53 participants of the PreventCD study, of whom 33 developed CeD during follow-up. Following study inclusion at 3 months of age, samples were drawn at predefined ages, diagnosis (first anti-transglutaminase antibody (TGA) positivity or diagnostic biopsy) and after the start of a gluten-free diet (GFD). This allowed identification of circulating miRNAs that are deregulated before TGA positivity. For validation of the biomarkers for CeD and GFD response, two additional cohorts were included in subsequent meta-analyses. Additionally, miRNAs were measured in duodenal biopsies in a case-control cohort. RESULTS: 53 circulating miRNAs were increased (27) or decreased (26) in CeD versus controls. We assessed specific trends in these individual miRNAs in the PreventCD cohort by grouping the pre-diagnostic samples of the CeD patients (all had negative TGA) by how close to seroconversion (first sample positive TGA) the samples were taken. 8/53 miRNAs differed significantly between controls and samples taken <1 year before TGA positivity: miR-21-3p, miR-374a-5p, 144-3p, miR-500a-3p, miR-486-3p let-7d-3p, let-7e-5p and miR-3605-3p. 6/26 downregulated miRNAs reconstituted upon GFD, including miR-150-5p/-3p, whereas no upregulated miRNAs were downregulated upon GFD. 15/53 biomarker candidates also differed between CeD biopsies and controls, with a concordant direction, indicating that these circulating miRNAs might originate from the intestine. CONCLUSIONS: We identified 53 circulating miRNAs that are potential early biomarkers for CeD, of which several can be detected more than a year before TGA positivity and some start to normalize upon GFD

    Thioredoxin is involved in endothelial cell extracellular transglutaminase 2 activation mediated by celiac disease patient IgA

    Get PDF
    Purpose: To investigate the role of thioredoxin (TRX), a novel regulator of extracellular transglutaminase 2 (TG2), in celiac patients IgA (CD IgA) mediated TG2 enzymatic activation. Methods: TG2 enzymatic activity was evaluated in endothelial cells (HUVECs) under different experimental conditions by ELISA and Western blotting. Extracellular TG2 expression was studied by ELISA and immunofluorescence. TRX was analysed by Western blotting and ELISA. Serum immunoglobulins class A from healthy subjects (H IgA) were used as controls. Extracellular TG2 enzymatic activity was inhibited by R281. PX12, a TRX inhibitor, was also employed in the present study. Results: We have found that in HUVECs CD IgA is able to induce the activation of extracellular TG2 in a dose-dependent manner. Particularly, we noted that the extracellular modulation of TG2 activity mediated by CD IgA occurred only under reducing conditions, also needed to maintain antibody binding. Furthermore, CD IgA-treated HUVECs were characterized by a slightly augmented TG2 surface expression which was independent from extracellular TG2 activation. We also observed that HUVECs cultured in the presence of CD IgA evinced decreased TRX surface expression, coupled with increased secretion of the protein into the culture medium. Intriguingly, inhibition of TRX after CD IgA treatment was able to overcome most of the CD IgA-mediated effects including the TG2 extracellular transamidase activity. Conclusions: Altogether our findings suggest that in endothelial cells CD IgA mediate the constitutive activation of extracellular TG2 by a mechanism involving the redox sensor protein TRX

    Changes in Non-Deamidated versus Deamidated Epitope Targeting and Disease Prediction during the Antibody Response to Gliadin and Transglutaminase of Infants at Risk for Celiac Disease

    No full text
    Celiac disease (CeD) is a conditional autoimmune disorder with T cell-mediated immune response to gluten coupled with antibody production to gliadin and the self-protein tissue transglutaminase (TG2). TG2 contributes to the CeD pathomechanism by deamidating gliadin, thereby generating more immunogenic peptides. Anti-gliadin antibodies may appear before the autoantibody production. The scope of this study was to dissect these early antibody responses by investigating serum samples collected during the PreventCD prospective double-blind study, where infants with high CeD risk were randomized to 200 mg daily gluten intake or placebo from 4 to 6 months of age, followed by frequent blood testing on regular gluten consumption in both groups. After primary gluten intake, children with or without later CeD produced IgA and IgG antibodies which preferentially recognized non-deamidated gliadin peptides. At CeD development with anti-TG2 seroconversion, there was a significant increase in the antibody reaction toward deamidated gliadin peptides (DGP), with maturation in the binding strength for the PEQPFP gamma-gliadin core peptide. The earliest produced autoantibodies targeted TG2&rsquo;s celiac epitope 2. Our results reveal a qualitative change in the gliadin-directed humoral immune response at the time when anti-TG2 antibodies appear, but anti-DGP antibodies in the absence of anti-TG2 antibodies are not disease-predictive

    Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia

    No full text
    Objective: To investigate the presence of autoantibody deposition against type 2 tissue transglutaminase (TG2; a reliable marker of the whole spectrum of gluten sensitivity) in the jejunal tissue and brain of patients with gluten ataxia and in control subjects. Methods: The authors evaluated jejunal biopsy samples from nine patients with gluten ataxia and seven patients with other causes of ataxia for the presence of TG2-related immunoglobulin deposits using double-color immunofluorescence. Autopsy brain tissue from one patient with gluten ataxia and one neurologically intact brain were also studied. Results: IgA deposition on jejunal TG2 was found in the jejunal tissue of all patients with gluten ataxia and in none of the controls. The intestinal IgA deposition pattern was similar to that seen in patients with overt and latent celiac disease and in those with dermatitis herpetiformis. Widespread IgA deposition around vessels was found in the brain of the patient with gluten ataxia but not the control brain. The deposition was most pronounced in the cerebellum, pons, and medulla. Conclusions: Anti-tissue transglutaminase IgA antibodies are present in the gut and brain of patients with gluten ataxia with or without an enteropathy in a similar fashion to patients with celiac disease, latent celiac disease, and dermatitis herpetiformis but not in ataxia control subjects. This finding strengthens the contention that gluten ataxia is immune mediated and belongs to the same spectrum of gluten sensitivity as celiac disease and dermatitis herpetiformis

    Coeliac disease case finding and diet monitoring by point-of-care testing

    No full text
    Background: Immunoglobulin A class transglutaminase autoantibodies are highly predictive markers of active coeliac disease, a disorder difficult to recognize solely on clinical grounds. Aims: To develop and evaluate a simple rapid test for point-of-care detection of coeliac autoantibodies. Methods: The novel whole blood test utilizes the patient's endogenous transglutaminase in red blood cells for detection of transglutaminase-specific immunoglobulin A antibodies present in the blood sample, with normal plasma immunoglobulin A detection as positive test control. We evaluated 284 patients under suspicion of coeliac disease and undergoing jejunal biopsy, and 263 coeliac patients on a gluten-free diet, 383 being tested prospectively in a point-of-care setting. Results were compared with histology, conventional serum autoantibody results and dietary adherence. Results: The rapid test showed 97% sensitivity and 97% specificity for untreated coeliac disease, and identified all immunoglobulin A-deficient samples. Point-of-care testing found new coeliac cases as efficiently as antibody tests in laboratory. Coeliac autoantibodies were detected onsite in 21% of treated patients, while endomysial and transglutaminase antibodies were positive in 20% and 19%, respectively. The positivity rate correlated with dietary lapses and decreased on intensified dietary advice given upon positive point-of-care test results. Conclusions: Point-of-care testing was accurate in finding new coeliac cases and helped to identify and decrease dietary non-compliance

    Efficient T cell–B cell collaboration guides autoantibody epitope bias and onset of celiac disease

    No full text
    B cells play important roles in autoimmune diseases through autoantibody production, cytokine secretion, or antigen presentation to T cells. In most cases, the contribution of B cells as antigen-presenting cells is not well understood. We have studied the autoantibody response against the enzyme transglutaminase 2 (TG2) in celiac disease patients by generating recombinant antibodies from single gut plasma cells reactive with discrete antigen domains and by undertaking proteomic analysis of anti-TG2 serum antibodies. The majority of the cells recognized epitopes in the N-terminal domain of TG2. Antibodies recognizing C-terminal epitopes interfered with TG2 cross-linking activity, and B cells specific for C-terminal epitopes were inefficient at taking up TG2-gluten complexes for presentation to gluten-specific T cells. The bias toward N-terminal epitopes hence reflects efficient T-B collaboration. Production of antibodies against N-terminal epitopes coincided with clinical onset of disease, suggesting that TG2-reactive B cells with certain epitope specificities could be the main antigen-presenting cells for pathogenic, gluten-specific T cells. The link between B cell epitopes, antigen presentation, and disease onset provides insight into the pathogenic mechanisms of a T cell-mediated autoimmune condition

    Population screening for coeliac disease in primary care by district nurses using a rapid antibody test: diagnostic accuracy and feasibility study

    No full text
    Objective To evaluate the feasibility and diagnostic accuracy of screening for coeliac disease by rapid detection of IgA antibodies to tissue transglutaminase performed in primary care
    corecore