2,259 research outputs found

    The Sizes of Candidate z∌9−10z\sim9-10 Galaxies: confirmation of the bright CANDELS sample and relation with luminosity and mass

    Get PDF
    Recently, a small sample of six z∌9−10z\sim9-10 candidates was discovered in CANDELS that are ∌10−20×\sim10-20\times more luminous than any of the previous z∌9−10z\sim9-10 galaxies identified over the HUDF/XDF and CLASH fields. We measure the sizes of these candidates to map out the size evolution of galaxies from the earliest observable times. Their sizes are also used to provide a valuable constraint on whether these unusual galaxy candidates are at high redshift. Using galfit to derive sizes from the CANDELS F160W images of these candidates, we find a mean size of 0.13±\pm0.02" (or 0.5±\pm0.1 kpc at z∌9−10z\sim9-10). This handsomely matches the 0.6 kpc size expected extrapolating lower redshift measurements to z∌9−10z\sim9-10, while being much smaller than the 0.59" mean size for lower-redshift interlopers to z∌9−10z\sim9-10 photometric selections lacking the blue IRAC color criterion. This suggests that source size may be an effective constraint on contaminants from z∌9−10z\sim9-10 selections lacking IRAC data. Assuming on the basis of the strong photometric evidence that the Oesch et al. 2014 sample is entirely at z∌9−10z\sim9-10, we can use this sample to extend current constraints on the size-luminosity, size-mass relation, and size evolution of galaxies to z∌10z\sim10. We find that the z∌9−10z\sim9-10 candidate galaxies have broadly similar sizes and luminosities as z∌6z\sim6-8 counterparts with star-formation-rate surface densities in the range of ÎŁSFR=1−20 M⊙ yr−1 kpc−2\rm \Sigma_{SFR}=1-20\, M_\odot~ yr^{-1}\, kpc^{-2}. The stellar mass-size relation is uncertain, but shallower than those inferred for lower-redshift galaxies. In combination with previous size measurements at z=4-7, we find a size evolution of (1+z)−m(1+z)^{-m} with m=1.0±0.1m=1.0\pm0.1 for >0.3Lz=3∗>0.3L^*_{z=3} galaxies, consistent with the evolution previously derived from 2<z<82 < z < 8 galaxies.Comment: 9 figures, 5 tables, accepted by Ap

    Conservation Evaluation of the Pacific Population of Tall Woolly-heads, Psilocarphus elatior, an Endangered Herb in Canada

    Get PDF
    In Canada, Psilocarphus elatior occurs in British Columbia, Alberta and Saskatchewan. This paper examines the status of the Pacific populations located on southeastern Vancouver Island in southwestern British Columbia. The Pacific population consists of 12 recorded sites of which only five have been confirmed since 1993. In British Columbia, P. elatior is associated with dried beds of vernal pools and other open, moist depressions at lower elevations. In British Columbia, P. elatior populations occur in large numbers at only two of the seven locations

    The Evolution of Rest-Frame K-band Properties of Early-Type Galaxies from z=1 to the Present

    Get PDF
    We measure the evolution of the rest-frame K-band Fundamental Plane from z=1 to the present by using IRAC imaging of a sample of early-type galaxies in the Chandra Deep Field-South at z~1 with accurately measured dynamical masses. We find that M/LKM/L_K evolves as Δln⁥(M/LK)=(−1.18±0.10)z\Delta\ln{(M/L_K)}=(-1.18\pm0.10)z, which is slower than in the B-band (Δln⁥(M/LB)=(−1.46±0.09)z\Delta\ln{(M/L_B)}=(-1.46\pm0.09)z). In the B-band the evolution has been demonstrated to be strongly mass dependent. In the K-band we find a weaker trend: galaxies more massive than M=2×1011M⊙M=2\times10^{11}M_{\odot} evolve as Δln⁥(M/LK)=(−1.01±0.16)z\Delta\ln{(M/L_K)}=(-1.01\pm0.16)z; less massive galaxies evolve as Δln⁥(M/LK)=(−1.27±0.11)z\Delta\ln{(M/L_K)}=(-1.27\pm0.11)z. As expected from stellar population models the evolution in M/LKM/L_K is slower than the evolution in M/LBM/L_B. However, when we make a quantitative comparison, we find that the single burst Bruzual-Charlot models do not fit the results well, unless large dust opacities are allowed at z=1. Models with a flat IMF fit better, Maraston models with a different treatment of AGB stars fit best. These results show that the interpretation of rest-frame near-IR photometry is severely hampered by model uncertainties and therefore that the determination of galaxy masses from rest-frame near-IR photometry may be harder than was thought before.Comment: 5 pages, 3 figures, Accepted for publication in ApJ

    Infall, the Butcher-Oemler Effect, and the Descendants of Blue Cluster Galaxies at z~0.6

    Full text link
    Using wide-field HST/WFPC2 imaging and extensive Keck/LRIS spectroscopy, we present a detailed study of the galaxy populations in MS2053--04, a massive, X-ray luminous cluster at z=0.5866. Analysis of 149 confirmed cluster members shows that MS2053 is composed of two structures that are gravitationally bound to each other; their respective velocity dispersions are 865 km/s (113 members) and 282 km/s (36 members). MS2053's total dynamical mass is 1.2x10^15 Msun. MS2053 is a classic Butcher-Oemler cluster with a high fraction of blue members (24%) and an even higher fraction of star-forming members (44%), as determined from their [OII] emission. The number fraction of blue/star-forming galaxies is much higher in the infalling structure than in the main cluster. This result is the most direct evidence to date that the Butcher-Oemler effect is linked to galaxy infall. In terms of their colors, luminosities, estimated internal velocity dispersions, and [OII] equivalent widths, the infalling galaxies are indistinguishable from the field population. MS2053's deficit of S0 galaxies combined with its overabundance of blue spirals implies that many of these late-types will evolve into S0 members. The properties of the blue cluster members in both the main cluster and infalling structure indicate they will evolve into low mass, L<L* galaxies with extended star formation histories like that of low mass S0's in Coma. Our observations show that most of MS2053's blue cluster members, and ultimately most of its low mass S0's, originate in the field. Finally, we measure the redshift of the giant arc in MS2053 to be z=3.1462; this object is one in only a small set of known strongly lensed galaxies at z>3.Comment: Accepted by ApJ. Version with full resolution figures available at http://www.exp-astro.phys.ethz.ch/tran/outgoing/ms2053.ps.g

    Mass-to-Light Ratios of Field Early-Type Galaxies at z~1 from Ultra-Deep Spectroscopy: Evidence for Mass-dependent Evolution

    Get PDF
    We present an analysis of the Fundamental Plane for a sample of 27 field early-type galaxies in the redshift range 0.6<z<1.15. The galaxies in this sample have high S/N spectra obtained at the VLT and high resolution imaging from the ACS. We find that the mean evolution in M/L of our sample is Deltaln(M/LB)=−1.74+/−0.16zDelta ln (M/L_B) = -1.74+/-0.16z, with a large galaxy-to-galaxy scatter. This value can be too low by 0.3 due to selection effects, resulting in Deltaln(M/LB)=−1.43+/−0.16zDelta ln (M/L_B) = -1.43+/-0.16z. The strong correlation between M/L and rest-frame color indicates that the observed scatter is not due to measurement errors, but due to intrinsic differences between the stellar populations of the galaxies. This pace of evolution is much faster than the evolution of cluster galaxies. However, we find that the measured M/L evolution strongly depends on galaxy mass. For galaxies with masses M>2x1011MsolM>2 x 10^11 Msol, we find no significant difference between the evolution of field and cluster galaxies: Deltaln(M/LB)=−1.20+/−0.18zforfieldgalaxiesandDelta ln (M/L_B) = -1.20+/-0.18z for field galaxies and Delta ln (M/L_B) = -1.12+/-0.06z$ for cluster galaxies. The relation between the measured M/L evolution and mass is partially due to selection effects. However, even when taking selection effects into account, we still find a relation between M/L evolution and mass, which is most likely caused by a lower mean age and a larger intrinsic scatter for low mass galaxies. Results from lensing early-type galaxies, which are mass-selected, show a very similar trend with mass. This, combined with our findings, provides evidence for down-sizing. Previous studies of the rate of evolution of field early-type galaxies found a large range of mutually exclusive values. We show that these differences are largely caused by the differences between fitting methods. (Abridged)Comment: figures 3 and 4 available at http://www.strw.leidenuniv.nl/~vdwel/private/FPpaper

    A High Merger Fraction in the Rich Cluster MS1054-03 at z=0.83: Direct Evidence for Hierarchical Formation of Massive Galaxies

    Get PDF
    We present a morphological study of the galaxy population of the luminous X-ray cluster MS1054-03 at z=0.83. The sample consists of 81 spectroscopically confirmed cluster members in a 3 x 2 Mpc area imaged in F606W and F814W with WFPC2. We find thirteen ongoing mergers in MS1054-03, comprising 17% of the L > L* cluster population. Most of these mergers will likely evolve into luminous (\sim 2 L*) elliptical galaxies, and some may evolve into S0 galaxies. Assuming the galaxy population in MS1054-03 is typical for its redshift it is estimated that \sim 50% of present-day cluster ellipticals experienced a major merger at z < 1. The mergers are preferentially found in the outskirts of the cluster, and probably occur in small infalling clumps. Morphologies, spectra, and colors of the mergers show that their progenitors were typically E/S0s or early-type spirals with mean stellar formation redshifts z* \gtrsim 1.7. The red colors of the merger remnants are consistent with the low scatter in the color-magnitude relation in rich clusters at lower redshift. The discovery of a high fraction of mergers in this young cluster is direct evidence against formation of ellipticals in a single ``monolithic'' collapse at high redshift, and in qualitative agreement with predictions of hierarchical models for structure formation.Comment: Added GIF version of Figure 1. At http://www.astro.rug.nl/~dokkum/preprints/merger_fig1.eps.gz the PS file is available. Accepted for publication in ApJ Letter

    Domain anomaly detection in machine perception: a system architecture and taxonomy

    Get PDF
    We address the problem of anomaly detection in machine perception. The concept of domain anomaly is introduced as distinct from the conventional notion of anomaly used in the literature. We propose a unified framework for anomaly detection which exposes the multifacetted nature of anomalies and suggest effective mechanisms for identifying and distinguishing each facet as instruments for domain anomaly detection. The framework draws on the Bayesian probabilistic reasoning apparatus which clearly defines concepts such as outlier, noise, distribution drift, novelty detection (object, object primitive), rare events, and unexpected events. Based on these concepts we provide a taxonomy of domain anomaly events. One of the mechanisms helping to pinpoint the nature of anomaly is based on detecting incongruence between contextual and noncontextual sensor(y) data interpretation. The proposed methodology has wide applicability. It underpins in a unified way the anomaly detection applications found in the literature

    A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z=7.730 using Keck/MOSFIRE

    Get PDF
    We present a spectroscopic redshift measurement of a very bright Lyman break galaxy at z=7.7302+-0.0006 using Keck/MOSFIRE. The source was pre-selected photometrically in the EGS field as a robust z~8 candidate with H=25.0 mag based on optical non-detections and a very red Spitzer/IRAC [3.6]-[4.5] broad-band color driven by high equivalent width [OIII]+Hbeta line emission. The Lyalpha line is reliably detected at 6.1 sigma and shows an asymmetric profile as expected for a galaxy embedded in a relatively neutral inter-galactic medium near the Planck peak of cosmic reionization. The line has a rest-frame equivalent width of EW0=21+-4 A and is extended with V_FWHM=360+90-70 km/s. The source is perhaps the brightest and most massive z~8 Lyman break galaxy in the full CANDELS and BoRG/HIPPIES surveys, having assembled already 10^(9.9+-0.2) M_sol of stars at only 650 Myr after the Big Bang. The spectroscopic redshift measurement sets a new redshift record for galaxies. This enables reliable constraints on the stellar mass, star-formation rate, formation epoch, as well as combined [OIII]+Hbeta line equivalent widths. The redshift confirms that the IRAC [4.5] photometry is very likely dominated by line emission with EW0(OIII+Hbeta)= 720-150+180 A. This detection thus adds to the evidence that extreme rest-frame optical emission lines are a ubiquitous feature of early galaxies promising very efficient spectroscopic follow-up in the future with infrared spectroscopy using JWST and, later, ELTs.Comment: 6 pages, 4 figures, small updates to match ApJL accepted versio
    • 

    corecore