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High-Precision Measurements of the Copolar Correlation Coefficient:
Non-Gaussian Errors and Retrieval of the Dispersion Parameter m in Rainfall
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Department of Meteorology, University of Reading, Reading, United Kingdom

(Manuscript received 28 September 2015, in final form 22 March 2016)

ABSTRACT

The copolar correlation coefficient rhv has many applications, including hydrometeor classification, ground

clutter and melting-layer identification, interpretation of ice microphysics, and the retrieval of raindrop size

distributions (DSDs). However, the quantitative error estimates that are necessary if these applications are to

be fully exploited are currently lacking. Previous error estimates of rhv rely on knowledge of the unknown

‘‘true’’ rhv and implicitly assume a Gaussian probability distribution function of rhv samples. Frequency

distributions of rhv estimates are in fact shown to be highly negatively skewed. A new variable, L 5
log10(12 rhv), is defined that does have Gaussian error statistics and a standard deviation depending only on

the number of independent radar pulses. This is verified using observations of spherical drizzle drops, al-

lowing, for the first time, the construction of rigorous confidence intervals in estimates of rhv. In addition, the

manner in which the imperfect collocation of the horizontal and vertical polarization sample volumes may be

accounted for is demonstrated. The possibility of usingL to estimate the dispersion parameterm in the gamma

drop size distribution is investigated. Including drop oscillations is found to be essential for this application;

otherwise, there could be biases in retrieved m of up to approximately 8. Preliminary results in rainfall are

presented. In a convective rain case study, the estimates presented herein show m to be substantially larger

than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a

simple exponential DSD is assumed.

1. Introduction

The copolar correlation coefficient rhv between hori-

zontal (H) and vertical (V) polarization radar signals is a

measure of the variety of hydrometeor shapes in a pulse

volume. It is therefore useful for applications such as

identifying the melting layer (Caylor and Illingworth

1989; Brandes and Ikeda 2004; Tabary et al. 2006;

Giangrande et al. 2008), ground clutter (e.g., Tang et al.

2014), rain–hail mixtures (Balakrishnan and Zrnić 1990)

and interpreting polarimetric signatures in ice (e.g.,

Andrić et al. 2013), and potentially the retrieval of the

drop size distribution (DSD). The standard deviations of

differential reflectivityZDR and differential phase shiftfdp

are both functions of rhv (Bringi and Chandrasekar 2001).

Therefore, rhv dictates both the quality of dual-

polarization measurements and their weighting in

hydrometeor classification schemes (Park et al. 2009). In

rainfall, rhv is typically 0.98–1. Giangrande et al. (2008)

use data where rhv , 0.97 to identify the melting layer.

For hail, rhv can bemuch lower because ofMie scattering.

At present, quantitative use of rhv is hampered by a lack

of rigorous confidence intervals accompanying the rhv
estimates. Error estimates are available by adopting an

empirical approach (Illingworth and Caylor 1991) or a

linear perturbation technique (Liu et al. 1994; Torlaschi

and Gingras 2003), both of which implicitly assume a

Gaussian probability distribution for the rhv samples. We

will show that the distribution of rhv samples is in fact non-

Gaussian and highly negatively skewed.

Natural raindrop size distributions can be described

by a gamma distribution (Ulbrich 1983):

N(D)5N
0
Dm exp

�
2
(3:671m)

D
0

D

�
, (1)

whereD is the equivalent spherical drop diameter,N0 is

the intercept parameter, D0 is the median volume drop

diameter, and m is the dispersion parameter (a measure
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of the drop size spectrum shape). If m 5 0, by ex-

ploiting the relationship between drop diameter and

drop axis ratio,D0 can be estimated using ZDR (Seliga

and Bringi 1976). Higher m corresponds to more

monodisperse drop size distributions. Since rhv is

sensitive to variations in drop shape, it can in principle

be used to estimate m (Jameson 1987), knowledge of

which could improve dual-polarization and dual-

frequency (e.g., the Global Precipitation Measure-

ment satellite) rain-rate estimates. Figure 1 shows rain

rate R per unit radar reflectivity Z as a function of

ZDR for simulated gamma distributions with m 5 21,

0, 2, 4, 8, 12, and 16. The rain rate is sensitive to var-

iability in the shape of the drop size spectrum; un-

certainty in m alone could introduce an error in the

retrieved rain rate of up to 2.5 dB (almost a factor of 2)

for a given pair of Z and ZDR observations.

It is difficult to obtain reliable estimates of m from

observations. Disdrometers suffer from undersampling

of large drops, which cause m values that are derived

from the third, fourth, and sixth moments of the drop

size distribution to be biased high (Johnson et al.

2014). Furthermore, disdrometers also undercount

the number of drops , 0.5mm (Tokay et al. 2001),

which can also introduce a bias in estimates of m. Es-

timating DSD parameters using radar is therefore

preferable, because of the very large number of drops

being sampled. Wilson et al. (1997) made radar ob-

servations dwelling in rain at elevation angles above

208 and reported that the difference in the mean

Doppler velocity atH and V polarizations provides an

estimate of m, which were in the range of 1 to 11, and,

onceZDR exceeded 0.5 dB, all the values were above 4.

Doppler spectra of rain at vertical incidence with

multiple wavelength radars, including wind profiler

frequencies that respond to the clear-air motion, have

been utilized to estimate m (Williams 2002; Schafer

et al. 2002). These experiments find m ranges between

0 and 18, but is typically between 0 and 6. Unal (2015)

fits the observed Doppler spectra to theoretical drop

spectra at S band and retrieves m in the range

from 21 to 5. The disadvantage of these techniques is

that they use high-elevation angles; for operational

monitoring of surface rainfall, measurements at

FIG. 1. Rain rate (dB, referenced to 1mmh21) per unit radar reflectivity as a function ofZDR

computed using Gans theory for gamma distributions of m521, 0, 2, 4, 8, 12, and 16. The rain

rate can vary by as much as 2.5 dB for a given pair ofZ andZDR observations as a result of drop

spectrum shape variability.
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low-elevation angles are preferable. This motivates the

use of rhv to derive m in rainfall. Illingworth and

Caylor (1991) and Thurai et al. (2008) inferred

m from the decrease in rhv as ZDR increases. The

difficulty here is that any mismatches in the H and V

beams will introduce an uncorrelated noise compo-

nent, so that even for perfectly spherical drizzle

droplets, where the true rhv is unity, the radar will

always detect a value less than one (we will call this

maximum obtainable level of rhv ‘‘f
max
hv ’’; see section

5). From measurements in rain at short range,

Illingworth and Caylor (1991) inferred m values,

which if corrected with an estimate of fmax
hv were in the

range 0–2, but even for long dwells the estimated

errors in m were quite large. Thurai et al. (2008) an-

alyzed rhv measurements from an operational radar

and obtained estimates of m in the range of 1–3;

however, their approach relies on empirically derived

relationships between rhv and DSD widths from two-

dimensional video disdrometer (2DVD) measurements.

Furthermore, the technique is only valid for intense rain

ZDR $ 2dB and rhv , 0.98).

The aim of this paper is to define a new variable,

L52log10(12 rhv), that has Gaussian error statistics

with a width predictable from the number of in-

dependent radar pulses. This can be readily estimated

by using the observed Doppler spectral width sy. We

will then present measurements of L in rainfall as a

function of ZDR, and retrieve estimates of m by com-

paring these with predicted L and ZDR for various

three-parameter gamma distributions. The possibility

of using this technique to retrieve m using operational

radars is then discussed.

2. The copolar correlation coefficient (rhv)

The quantity rhv is defined as (Doviak and Zrnić 2006)

r
hv
5

hS
VV

S
HH
* iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjS
HH

j2ihjS
VV

j2i
q , (2)

FIG. 2. Example time series (0.5 s) for single 75-m gates from 1.58-elevation dwells in

(a) drizzle (ZDR 5 0 dB) at 1203 UTC 6 Feb 2014 and (b) heavier rainfall (ZDR 5 1.1 dB) at

1706 UTC 31 Jan 2014. For both examples, SNR . 40 dB. For drizzle, the H and V echo time

series vary in unison as the drops are all spherical. In heavier rainfall, the broader axis ratio

distribution causes the H and V time series to be less correlated. The rate of fluctuation of the

signals is determined by the Doppler spectral width.
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where hSHHi and hSVVi are the copolar elements of the

backscattering matrix averaged over an ensemble of scat-

terers for the H and V polarizations, respectively, and the

asterisk indicates the complex conjugate. It can be esti-

mated by correlating successive power or complex (I and

Q)measurements.Examples of power time series in drizzle

and heavier rainfall from the 3-GHz Chilbolton Advanced

Meteorological Radar (CAMRa) are shown in Figs. 2a and

2b, respectively. The radar is a coherent-on-receive mag-

netron system, transmitting and receiving alternateH- and

V-polarized pulses with a pulse repetition frequency (PRF)

of 610Hz. A cubic polynomial interpolation is used to es-

timate theH power at the V pulse timing and the V power

at the H pulse timing. Its narrow one-way half-power

beamwidth (0.288)makes it capable of very high-resolution

measurements. The full capabilities of this radar are dis-

cussed in Goddard et al. (1994). The observed fluctuating

signals in Fig. 2 are caused by the superposition of the

backscatteredwaves from each drop in the sample volume;

the rate of fluctuation is determined by the Doppler spec-

tral width. For drizzle, since the drops are spherical,

ZDR5 0 dB, and theH andV signals are almost perfectly

correlated: rhv5 0.995. For heavier rainfall, a systematically

lowerV power is measured (ZDR5 1.1dB), and the signals

are visibly less correlated (rhv 5 0.987), as a result of the

broader axis ratio distributions in the sample volume.

These estimates of rhv are derived from a finite number

of reshufflings, and therefore there is some uncertainty in

them. In what follows, we quantify this uncertainty.

3. Theoretical measurement error in estimated
correlation of time series

Figure 3a shows the distribution of estimates of the

correlation coefficient, r̂hv (calculated from a finite length

time series), as distinct from the true copolar correlation

coefficient, rhv (which would bemeasured for a time series

of infinite length). The data were collected during a 1.58-
elevation dwell in drizzle (ZDR , 0.1dB), with very high

signal-to-noise ratio (SNR; . 40dB) on 6 February 2014.

Each r̂hv is calculated from 64H and V pulse pairs (0.21-s

dwell) from 75-m range gates with sy 5 1.1 6 0.1ms21.

The distribution of r̂hv has a peak that is close to rhv (which

is, 1; see section 5d), but exhibits a very long tail at lower

r̂hv, while there are no data with r̂hv . 1. Clearly, this

distribution is notGaussian and the negative skewness will

negatively bias themean ofmany r̂hv samples compared to

the true value of rhv.

Fisher (1915) states that sample correlation coefficients

(r̂) of a true correlation coefficient (r) calculated from a

finite number of Gaussian random variables are skewed for

r 6¼ 0. However, the variable

F̂5
1

2
ln

�
11 r̂

12 r̂

�
(3)

is Gaussian, with a mean of

F5
1

2
ln

�
11 r

12 r

�
(4)

FIG. 3. The frequency distribution of (a) r̂hv calculated from a total of 1159 time series (0.21 s; 75-m gates) in drizzle (ZDR, 0.1 dB) and

of (b) L̂ 5 2log10(1 2 r̂hv). The data were collected at 1203 UTC 6 Feb 2014 during a 1.58-elevation dwell and have very high SNR

(.40 dB). The sy values for these data range between 0.9 and 1.3m s21. Overplotted on L̂ is a Gaussian curve with the same mean and

standard deviation as in the measured distribution.
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and standard error of

s
F
5

1ffiffiffiffiffiffiffiffiffiffiffiffi
N2 3

p , (5)

where N is the number of independent samples used to

calculate r̂.

This is directly applicable to estimates of the radar

copolar correlation coefficient, by realizing that the I

andQ samples that are used to estimate rhv areGaussian

random variables (Doviak and Zrnić 2006). Noting that

r̂hv in meteorological targets is always close to unity so

that fractional changes in (1 2 r̂hv) are always much

greater than (1 1 r̂hv), Eq. (3) can be written as

F̂’
1

2
ln 22

ln 10

2
log

10
(12 r̂

hv
) . (6)

Since F̂ is normally distributed, the quantity

L̂52log
10
(12 r̂

hv
) (7)

is also normally distributed, with a mean of

L52log
10
(12 r

hv
) (8)

and standard deviation of

s
L
5

2

ln 10
3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

IQ
2 3

q (9)

for NIQ � 3, where NIQ is the number of independent I

and Q samples used to calculate r̂hv. Despite having

similar characteristics,L is preferred over the use of F as

it has the convenient property that rhv 5 0.9, 0.99, and

0.999 correspond to L 5 1, 2, and 3, respectively, and

therefore is more intuitive. Illingworth and Caylor

(1991) plotted their r̂hv data as log10(12 r̂hv) and their

histograms also appear to be Gaussian in shape.

Figure 3b illustrates the effect of the transform

L̂52log10(12 r̂hv) on the distribution in Fig. 3a. The

histogram is now symmetrical and bell shaped. A

Gaussian curve with an equal mean and standard de-

viation to the L̂ PDF is overplotted and is an excellent fit

to the data, showing that the distributions are indeed

Gaussian (and quantile–quantile plots, not shown here

for brevity, confirm this).

To determine the number of independent I and Q

samples, NIQ, we consider the autocorrelation function

for I and Q samples given by Doviak and Zrnić (2006):

R
IQ
(nT

s
)5 exp

"
28

�
ps

y
nT

s

l

�2
#
, (10)

where Ts is the time spacing between pulses of the same

polarization and nTs is the total time lag. Following the

definition of Papoulis (1965), the time to independence

for I and Q samples for large NIQ can be shown to be

t
IQ

5
l

2
ffiffiffiffiffiffi
2p

p
s
y

, (11)

where l is the radar wavelength and sy is the Doppler

spectral width. This is a factor of
ffiffiffi
2

p
smaller than the

more often used time to independence for reflectivity

samples. The number of independent I andQ pulses per

rhv sample can therefore be estimated by

N
IQ

5
T
dwell

t
IQ

5
2
ffiffiffiffiffiffi
2p

p
s
y
T
dwell

l
, (12)

where Tdwell is the dwell time.

The result [Eq. (9)] is significant as it shows that a

confidence interval for any measurement of rhv can be

calculated solely in terms of the number of independent

I andQ samples used to estimate it, which in turn can be

readily estimated using the observed Doppler spectral

width and Eq. (12). Furthermore, when multiple sam-

ples of L̂ are averaged, no bias is introduced to estimates

of r̂hv because of the nonlinear transform. We expand

this point in section 4.

To estimate confidence intervals for measurements of

r̂hv, one must

d apply the transform L̂52log10(12 r̂hv),
d calculate the standard deviation of L̂ using Eq.

(9), and
d apply the inverse transform 12 102(L̂6sL) to obtain

upper and lower confidence intervals (where sL will

contain the true value 68% of the time and 2sL will

contain it 98% of the time).

More conveniently, one can simply transform r̂hv data

into L̂ and use this for any subsequent analysis, with

confidence intervals of L̂ 6 sL. This is the approach we

follow in the rest of this paper. Although we are focusing

on data with very high SNRs in this paper, the theory

above should also be valid for weak SNR data, providing

that noise introduced is also Gaussian in the I and Q

samples.

This theoretical prediction was tested by comparing

estimates of sL using data collected in homogeneous

drizzle (ZDR , 0.1 dB) with very good SNRs (. 40dB).

In drizzle, L is constant since the drops are spherical

and, therefore, any variation sL is due to the finite NIQ.

Pulse-to-pulseH and V powers were recorded, and time

series of various lengths between 0.2 and 30 s were

constructed from these data and used to compute the

JULY 2016 KEAT ET AL . 1619



corresponding NIQ and L̂ values. Data were binned by

NIQ, and the standard deviation sL was computed for

each bin. Figure 4 shows how sL decreases as NIQ is

increased over more than two orders of magnitude. For

NIQ ’ 10, sL is slightly overestimated, and the data are

in excellent agreement with the results predicted by Eq.

(9) for NIQ . 30.

4. Comparison with existing error statistics

We now compare these new error statistics with

existing methods in the literature. From observations of

rhv in rain, the bright band, and ice, Illingworth and

Caylor (1991) derived empirically the relationship be-

tween their mean r̂hv estimates and their standard

deviation:

sIC
rhv

’ 1:25(12 r̂
hv
)ffiffiffi

n
p , (13)

where n is the number of 0.2-s time series they used to

estimate the mean rhv. Using a linear perturbation tech-

nique, Torlaschi and Gingras (2003) derive the following

equation for the standard deviation of a rhv measurement:

sTG
rhv

5
12 r2hvffiffiffiffiffiffiffiffi

2N
I

p , (14)

whereNI is the number of independent radar reflectivity

samples used for its estimation. Note that rhv in Eq. (14)

is the true correlation coefficient one is attempting to

measure (rather than the measured value, r̂hv). This

equation represents the standard deviation for infinite

SNR conditions and is valid for simultaneous or accu-

rately interpolated H and V sampling. Neither one of

these techniques is ideal, relying on either knowing a

priori the true correlation coefficient one is attempting

to measure (Torlaschi and Gingras 2003) or a number of

time series (Illingworth and Caylor 1991) and not the

number of independent pulses. It is not possible to

compare the method of Illingworth and Caylor (1991)

with our proposed method because sy for their data is

unknown, and therefore the number of independent

pulses in their time series cannot be quantified. Figure 5a

shows the errors on r̂hv calculated using our newmethod

compared to those calculated using the linear pertur-

bation method of Torlaschi and Gingras (2003) as a

function of NIQ in rain (rhv 5 0:98). The magnitudes of

the upper confidence bounds are largely similar; however,

FIG. 4. The quantity sL as a function of the number of independent I andQ samples used to

estimate L for high SNR measurements in drizzle (ZDR , 0.1 dB; SNR. 40 dB) at 1203 UTC

6 Feb. Different markers correspond to different Doppler spectral widths.
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for all NIQ the lower confidence interval is higher for

Torlaschi and Gingras (2003) (i.e., smaller deviations

from rhv are predicted), because of the asymmetric nature

of the new confidence intervals on r̂hv. The largest dif-

ference is for smallNIQ. AsNIQ increases, both the upper

and lower confidence intervals for eachmethod converge.

Although Fig. 5a serves as a useful illustration of the

difference between the methods, they are not strictly

comparable in practice: the error calculation of Torlaschi

and Gingras (2003) relies on knowledge of rhv, which in

reality is unknown. Conversely, the newmethod requires

no a priori knowledge of rhv and, so, is of much greater

practical use.

Figure 5b illustrates the theoretical bias introduced by

averaging many short samples of r̂hv, rather than L̂, in

rain (rhv 5 0:98). This bias is significant for small NIQ.

For example, when NIQ 5 10, the bias on L̂ is 0.1, which

is significant for the purpose of estimating m in rainfall;

this bias in L could lead to an underestimate of m of ap-

proximately 8 atZDR 5 2dB (see Fig. 8). It is not important

whether spatial or temporal averaging is used to increase the

number of independent I andQ samples, as long as rhv does

not vary substantially over the scales considered.

In summary, confidence intervals that rely on the

linear perturbation method overestimate the precision

of rhv measurements, and require knowledge of the true

rhv one is attempting tomeasure. Fundamentally, failure

to use the transform L when averaging short time series

will lead to significant biases in correlation coefficient

estimates. This is particularly important for operational

rhv applications that typically use very short dwell times

(discussed in section 8a), and would lead to a significant

bias in retrievals of m in rain.

5. Practical measurement of rhv

To fully exploit our new error estimates, and retrieve

rain DSDs, some practical considerations for the mea-

surement of rhv must first be considered.

a. Effect of alternate sampling

When estimating the correlation coefficient, the

nonsimultaneous transmission and reception ofH andV

pulses must be accounted for. Assuming a Gaussian

autocorrelation function to correct for this staggered

sampling (Sachidananda and Zrnić 1989) can lead to

unphysical samples where r̂hv . 1 (Illingworth and

Caylor 1991). In our analysis, we employ a cubic poly-

nomial interpolation to obtainH and V power estimates

at the intermediate sampling intervals (Caylor 1989),

which is very effective. We find that the interpolation

scheme works well: for drizzle with L5 2.4, we observe

FIG. 5. (a) A comparison of the confidence intervals calculated using the new method and that of Torlaschi and Gingras (2003) in rain

(rhv 5 0:98) and (b) the bias introduced by averaging r̂hv instead of L̂, as a function of NIQ. For all NIQ, the lower confidence interval is

higher for the Torlaschi and Gingras (2003) method, particularly for lower NIQ, because of the asymmetric nature of the confidence

intervals on rhv using the new method. Averaging r̂hv and not L̂ for small NIQ can lead to a large bias.
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that average values of L̂, binned by sy, are constant to

within 60.02 as sy varies between 0.1 and 2m s21. This

is evidence of successful interpolation, since there is

no systematic trend to lower L values at higher

spectral widths.

b. Signal-to-noise ratio

The addition of noise to the received signals acts to

reduce the correlation between theH and V time series.

The reduction factor f has been shown (Bringi et al.

1983) to vary predictably as

f 5
1�

11
1

SNR
H

�1/2�
11

1

SNR
V

�1/2
(15)

for simultaneous (or accurately interpolated) H and V

sampling, where SNRH and SNRV are the signal-to-

noise ratios for the H and V polarizations, respectively.

This was verified by Illingworth and Caylor (1991) with

measurements of rhv in drizzle. While it is in principle

possible to correct for the presence of noise using this

equation, because of the high degree of precision re-

quired in this work, only data with SNR . 34dB are

included in our analysis, which corresponds to a maxi-

mum achievable rhv measurement of 0.9996. However,

instrumental effects (described in section 5d below) will

have the same effect of adding uncorrelated noise, and

so in practice this maximum value is never reached.

c. Effect of phase error

To avoid a bias in r̂hv due to random phase error from

our magnetron system (Liu et al. 1994), we cross cor-

relate the power of the received echoes as opposed to

the complex I and Q signals, and take the square root,

following Illingworth and Caylor (1991).

d. Instrumental effects

Even in drizzle with very high SNR, antenna imper-

fections and other effects such as irregular magnetron

pulse timing and pulse shape reproducibility will cause

measured rhv to always be ,1 (Illingworth and Caylor

1991; Liu et al. 1994), as effectively they cause theH and

V pulses to sample slightly different volumes. Here, we

propose a method for quantifying and accounting for

this bias, analogous to the SNR factor [Eq. (15)]

suggested by Bringi et al. (1983). We consider theH and

V echoes to consist of two parts: a common sample

volume and parts of each sample volume, which are

unique to a particular polarization. By treating the for-

mer as ‘‘signal’’ and the latter as unwanted ‘‘noise,’’ we

obtain an equation similar to Eq. (15). Full details are

provided in the appendix. The practical upshot is that

the measured rhv is the true rhv multiplied by some di-

mensionless factor, fmax
hv , relating to how well matched

the H and V sample volumes are. For spherical drops,

rhv should be unity. The estimates of rhv for all such data

should therefore be equal to fmax
hv . When comparing

observations with simulated rhv, we multiply each of the

predicted values by fmax
hv so that they are directly com-

parable to the observations. Values of rhv have been

measured in drizzle (ZDR , 0.1 dB) for a large number

of samples on several days. Typically, fmax
hv is’ 0.996, but

varies by60.001 fromday to day, whichwe suggest is the

result of slightly irregular magnetron pulse timing and

shape reproducibility for the CAMRa system, which

may be temperature dependent. For this reason, fmax
hv has

been determined individually for each case.

6. Using L and ZDR to estimate m in rainfall

We now attempt to use our high-precision measure-

ments of L to retrieve m estimates in rainfall. The in-

dependence of (D0,m) and (L,ZDR) on the drop number

concentration means that a single L and ZDR observa-

tion pair corresponds to a unique D0 and m value. To

forward model L and ZDR for various gamma distribu-

tions, we must first assume an appropriate drop

shape model.

a. Mean drop shapes

There are numerous drop shape parameterizations in

the literature. Here, we examine drop axis ratios and

diameters from the recent experiments of Thurai and

Bringi (2005), Szakáll et al. (2008), and the fourth-order

polynomial fit to many experiments given by Brandes

et al. (2002). Figure 6a shows the mean axis ratio as a

function of drop diameter, for each of these models. The

Thurai and Bringi (2005) data suggest that mean drop

shapes are slightly prolate forD, 1mm, although it is in

the margin of measurement error that the drops are

spherical (Beard et al. 2010). Since it is known that drops

become spherical as their diameter tends to 0mm be-

cause of surface tension, our fit to the data is adapted so

that drops , 1mm are precisely spherical.

To choose the best mean drop shape model, a 5-h

dwell was made with CAMRa at a 1.58-elevation angle

over a nearby Joss–Waldvogel RD-80 impact dis-

drometer (approximately 7km away) in a frontal rain-

band on 25 April 2014. The disdrometer measures drop

sizes in 127 size bins from 0.3 to 5.0mm. The instrument

is regularly calibrated by the manufacturer and rain

rates estimated with this instrument agree very well with

those from a collocated rain gauge. Radar measure-

ments of ZDR are calibrated regularly (to within

60.1 dB) by making observations of drizzle (low Z),
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which we know to have a ZDR value of 0 dB. The range

resolution of the radar measurements is 75m, and is

averaged to 30 s to match the integration time used by

the disdrometer to estimate the DSD parameters. At

this elevation angle, the radar was sampling rain at a

height of 183m above the disdrometer. Figures 6b–d show

the observed radar measurement from the closest gate to

the disdrometer, as well as the corresponding disdrometer

ZDR values calculated using the Thurai and Bringi (2005),

Szakáll et al. (2008), and Brandes et al. (2002) drop shape

FIG. 6. (a) Comparison of mean drop axis ratios as a function of equivalent drop diameter D from recent experiments of Thurai and

Bringi (2005), Szakáll et al. (2008), and the fourth-order polynomial fit of older experimental data constructed by Brandes et al. (2002).

The model of Thurai and Bringi (2005) has been adapted so that drops are spherical forD, 1mm. Disdrometer ZDR is calculated using

the drop shapemodels of (b) Thurai andBringi (2005), (c) Szakáll et al. (2008), and (d) Brandes et al. (2002) from a 5-h dwell over a nearby

Joss–Waldvogel RD-80 impact disdrometer (approximately 7 km away) in a frontal rainband on 25 Apr 2014. The time resolution of the

radar measurements was decreased to 30 s to match the integration time of the disdrometer. At a 1.58-elevation angle, the radar was

sampling rain at a height of approximately 183m above the disdrometer. The dashed line is a 1:1 line. The smallest biases are achievedwith

the Thurai and Bringi (2005) model, especially for smaller ZDR, suggesting that these shapes best represent those of natural raindrops.

Therefore, this model is chosen for the analysis.

JULY 2016 KEAT ET AL . 1623



models, respectively. The Szakáll et al. (2008) axis ratios
are systematically smaller compared to both of the other

models for almost all D. Using this model makes the

disdrometer estimates ofZDR always larger than the radar

estimates. Thurai and Bringi (2005) and Brandes et al.

(2002) agree forD5 2–7mm, afterwhich the axis ratios of

Thurai and Bringi (2005) are closer to those of Szakáll
et al. (2008). Therefore, the radar and disdrometer ZDR

values for the Thurai and Bringi (2005) and Brandes et al.

(2002) models largely agree, apart from ZDR & 0.4dB.

The largest difference between these models occurs for

D , 2mm. Here, Szakáll et al. (2008) and Brandes et al.

(2002) predict more oblate drops than do Thurai and

Bringi (2005).

The Szakáll et al. (2008) model produces the largest

radar–disdrometer overall bias of ’0.23 dB. The biases

from Brandes et al. (2002) for ZDR bins of 0.2, 0.4, and

0.6 dB (60.1-dB bin width) are 0.09, 0.16, and 0.13 dB,

respectively. For the Thurai and Bringi (2005) model,

they are only 0.04, 0.08, and 0.09 dB, respectively, and

are very similar to results found by Brandes et al. (2002)

at higher ZDR. These reduced biases at low ZDR suggest

that the experimental results of Thurai andBringi (2005)

best represent natural raindrop shapes. We therefore

chose this model in our analysis. It is unclear why the

very small residual difference between radar and dis-

drometer estimates of ZDR using the Thurai and Bringi

(2005) shape model is observed. Some possible expla-

nations are that the radar calibration is slightly off

causing a systematic underestimation, the small sam-

pling volume of the disdrometer could be biasing ZDR,

or there could be residual error in the mean drop shape

model. However, this very small difference is un-

important for the retrievals that follow.

b. Drop oscillations

Drop oscillations increase the variety of shapes

within a radar pulse volume at any given time. This

means that the L we are attempting to estimate will be

lower than that predicted by modeling only the mean

drop axis ratios for drops of a given size. To account for

this, wemust parameterize these drop oscillations. In the

Thurai andBringi (2005) experiment, artificial raindrops

were created from a hose and allowed to fall 80m from a

bridge before drop axis ratio and counts were measured

with a 2DVD on the valley floor. This fall distance is

more than sufficient to allow the drops to achieve

steady-state oscillations, and so the standard deviations

of axis ratios measured in this experiment are in-

terpreted as drop oscillation amplitudes. However, the

large standard deviations of the axis ratios forD, 2mm

are likely artificial, caused by the finite resolution of the

2DVD instrument (Beard et al. 2010). Since drop

oscillations are thought to originate from vortex shed-

ding (Beard et al. 2010), which increases as a function of

drop size, the magnitude of the oscillations should de-

crease eventually to zero as the drop diameter tends to

0mm. Beard and Kubesh (1991) suggest that resonant

drop oscillations occur for drop sizes between 1.1 and

1.6mm; however, more recent measurements from the

University of Mainz wind tunnel show that amplitudes

of the axis ratios for these drop sizes were less than 0.025

(Szakáll et al. 2010). For this reason, the polynomial fit

to oscillation amplitude data from the Mainz wind tun-

nel (Szakáll et al. 2010) is used forD, 2mm, which has

the desired reduction in oscillation amplitude for small

drops.1 ForD. 2mm, we revert to themore statistically

robust drop oscillations from Thurai and Bringi (2005).

Since the oscillations are aerodynamically induced, with

an amplitude only a function of the drop size, they

should not vary with environmental conditions. In our

analysis, the oscillations were included by integrating

over Gaussian PDFs of axis ratios (Thurai and Bringi

2005) in our Gans theory computations. Figure 7 shows

the effect of oscillations on computed L and ZDR for

values of m521 (solid lines) and m5 16 (dashed lines).

Including drop oscillations for the purpose of estimating

m becomes increasingly important with increasing ZDR;

the difference between L at m 5 16 computed with and

without oscillations is as large as an equivalent change in

m of’ 8. We find that the modification of the oscillation

magnitudes for drop diameters , 2mm has a relatively

small impact (,0.01) on predictedL forZDR larger than

0.8 dB where we attempt retrievals of m. However, we

find that the use of Szakáll et al. (2010) oscillations for all
drop diameters has a large impact on predicted L values

(for m 5 21, L is approximately 0.1 lower). This is po-

tentially important for retrievals of m.

Comparatively large-amplitude (but short lived,

lasting less than approximately 0.4 s) collision-induced

oscillations can also occur (Szakáll et al. 2014). Rogers

(1989) estimate that the collision rate for an average

raindrop in a 55-dBZ rain column is approximately

1min21. This would imply that raindrops (even in very

heavy rainfall) spend an almost negligible fraction of time

(approximately 0.5%) affected by collision-induced os-

cillations. Raindrop clustering increases the likelihood of

these collisions (Jameson and Kostinski 1998). For rain

rates of around 10mmh21 (comparable to those pre-

sented in the following case studies), McFarquhar (2004)

1 Equation (1) in Szakáll et al. (2010) does not agree with the fit

in Fig. 3 (black line). By digitizing the Mainz wind tunnel data,

we calculate that their Eq. (1) should in fact be 1.8 3 1023D2
01

1.07 3 1022D0.
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estimate the collision rate to be about 5min21, implying

drops are affected only 3%of the time. For very large rain

rates (100mmh21), this fraction increases to 6% as the

collision rate approximately doubles to 10min21. Con-

sequently, their impact onLmeasurements is likely to be

small and can be ignored, other than for exceptional rain

rates (Thurai et al. 2013).

Figure 8 shows how L varies as a function of ZDR for

gamma distributions with m 5 21, 0, 2, 4, 8, 12, and 16

computed using Gans theory with the drop shape and

oscillation model discussed above. Note that lines of

constant m diverge with increasing ZDR. For ZDR *

0.5 dB, it becomes possible to distinguish m, given the

typical error on an L measurement (shown in Fig. 9).

7. Case studies of m retrieval

We now estimatem using measurements ofL andZDR

for stratiform rain case studies on 31 January, 25 April,

and 25 November 2014, and a convective case study on

22 May 2014. Typical rain rates for each of these case

studies can be found in Table 1. Dwells were made at an

elevation angle of 1.58. Strict data quality filters were

applied: SNR . 34dB, linear depolarization ratio

(LDR) , 227dB (close to the limit of cross-polar iso-

lation) to ensure no melting particle contamination or

ground clutter, and range . 5 km to avoid near-field

effects. Theoretical L and ZDR were computed using

Gans theory using the drop shape and oscillation model

discussed in section 6 (see Fig. 8). Observations were

averaged from 10 to 30 s and from range gates of 75 to

300m to increase the measurement precision of L. At

each gate, the most likely pair of m and D0 given the

observed L and ZDR values was obtained by selecting

the closest point in a lookup table of gamma DSD cal-

culations. Figure 9a shows the observed L binned every

0.02 and ZDR binned every 0.05 dB for the example of

25 November 2015. Overlaid are lines of constant

m 5 21, 0, 2, 4, 8, 12, and 16. Figure 9b is the same

distribution normalized to sum to 1 for each ZDR bin.

The fmax
hv on this day was calculated to be 0.9963 (see

section 5d). The observations ofL andZDR are generally

FIG. 7. Predicted L and ZDR values for gamma distributions of m 5 21 (solid) and 16

(dashed) with no oscillations (gray) and including oscillations (black). The inclusion of drop

oscillations is crucial to the interpretation of theL andZDRmeasurements. The fmax
hv is assumed

to be 0.9963 to match the case study in section 7.
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well contained within the expected range. The median

error on L̂ is sL ’ 0.025, and is shown as a representa-

tive error bar in Fig. 9. A comparison of these data with

disdrometer measurements from Williams et al. (2014)

is included. In this experiment, the mass spectrum mean

diameter Dm and mass spectrum standard deviation sm

were measured using a 2DVD. A sm–Dm fit was derived

from 18 969 measurements of 1min drop spectra (which

can readily be converted to a m–D0 fit). This was in turn

used to predict an L–ZDR relationship, shown by the

gray dashed line. Both L and ZDR were also predicted

using the proposedm–L relationship of Cao et al. (2008),

which is also derived from a 2DVD, where

L5
3:671m

D
0

. (16)

This is shown by the black dashed line.

The median and interquartile range of retrieved

m per ZDR bin for this day are shown in Fig. 10. The

median retrieved m is 5 atZDR 5 0.8 dB, increasing to 8

for ZDR 5 1.6 dB. There is significant spread in

retrieved m values, containing contributions from

measurement uncertainty on L, as well as true micro-

physical variability. The impact of changes in L on re-

trieved m is nonlinearly related to m; sL contributes more

to retrieved m variability for more monodispersed

(higher m) DSDs than for more polydispersed (lower m)

DSDs. Conversely, the contribution of sL to retrieved

m variability decreases as ZDR increases, as the dual-

polarization signature is larger and m is more easily dis-

tinguishable (see Fig. 8). To estimate the contribution

that the uncertainty on L measurements makes to this

observed variability, m was retrieved using the median

L6 the representative uncertainty depicted in Fig. 9. This

was then compared with the interquartile range of the

retrieved m for each ZDR bin. For ZDR bins of 0.8, 1, 1.2,

1.4, and 1.6 dB, we estimate that 88%, 66%, 32%, 31%,

and 27% of the variability, respectively, can be attrib-

uted to sL. For ZDR . 1 dB, most of the variability seen

in Fig. 10 can be attributed to true microphysical

variability.

Figure 11 shows a comparison with retrieved m for all

of the case studies collected. Each of the dwells in

FIG. 8. Theoretical L and ZDR results computed using Gans theory for gamma distri-

butions with m521, 0, 2, 4, 8, 12, and 16, using Thurai and Bringi (2005) mean drop axis

ratios and the oscillation model described in section 6b. The precision of L required to

estimate m decreases as ZDR increases. The fmax
hv is assumed to be 0.9963 to match the case

study in section 7.
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January, April, and November was made in stratiform

rain, whereas the May case study contains dwells from

convective rain. Overlain are predicted mean m values

(solid gray) and upper and lower bounds that contain

55% of the measurements (dashed gray) of Williams

et al. (2014) as a function of ZDR from the disdrometer

measurements. The solid black line shows the predicted

m–ZDR relationship using the m–L relationship of Cao

et al. (2008). There is a large spread in the radar-

retrieved median m values from case to case. Each me-

dian m estimate is from a very large number of retrieved

m estimates, such that the standard error is smaller than

the markers themselves, and so is not shown. The values

of retrieved m in January are approximately 0, close to

an exponential DSD for all ZDR smaller than 1.1 dB.

This is below the value predicted by Williams et al.

(2014) but agrees well with m predicted by Cao et al.

(2008). Interestingly, the case studies of April and No-

vember show m increasing with ZDR between 0.5 and

1.5 dB, compared to the trend seen by Williams et al.

(2014) and Cao et al. (2008) toward an exponential

DSD. The retrieved median m values from the May case

study, although agreeing with the decreasing trend with

ZDR, are significantly above the Cao et al. (2008) pre-

dictions and the upper bound of m from Williams et al.

(2014). Our retrieval suggests that, in this case, the rain

rate would be overestimated by almost 2 dB if an

exponential DSD or the fit of Cao et al. (2008) is as-

sumed. Whereas the m values are not outside the full

range of data measured byWilliams et al. (2014), the use

of the proposed m–Dm relationship would cause an

overestimate of about 1 dB (see Fig. 1).

8. Discussion

Our retrievals of m made using rhv and ZDR are typi-

cally larger than the radar estimates of m of between 1

and 3 by Thurai et al. (2008) and of between 0 and 2 by

Illingworth and Caylor (1991). Perhaps this is not sur-

prising, given that the imperfect collocation of theH and

V sample volumes was unaccounted for, and their r̂hv
would have been biased low as a result of averaging rhv
rather than L, both of which are accounted for in our

data. Furthermore, Illingworth and Caylor (1991) do not

FIG. 9. (a) The 2DPDFofL andZDRobservations, and (b) the normalized 2DPDF such that the distribution equals 1 for eachZDRbin for

observations ofL andZDR collected from dwells on 25Nov 2014. Here,L is binned every 0.02, andZDR is binned every 0.05 dB. Overplotted

are theoreticalL andZDRvalues computed usingGans theory for gammadistributions ofm521, 0, 2, 4, 8, 12, and 16. Typical errors onL and

ZDR are shown as error bars; the error onZDR is very small. The gray dashed line indicates the predictedL andZDR observations using DSD

parameters from the power-law fit to disdrometermeasurements inWilliams et al. (2014). The black dashed line indicates the predictedL and

ZDR observations using the m–L relationship of Cao et al. (2008). The fmax
hv for this day is measured to be 0.9963.

TABLE 1. Typical rain rates for each of the case studies, calcu-

lated from disdrometer measurements (April) and radar-

retrieved N0, D0, and m values (January, May, and November).

Date (2014) Typical R (mmh21) Peak R (mmh21)

31 Jan 1–3 8

25 Apr 2–3 7

22 May 2–7 .30

25 Nov 2–5 10
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include drop oscillations in their retrievals, which will

have led to a significant underestimate of m. Whereas

there is some agreement of the magnitudes of m for

ZDR , 1 dB with predicted Williams et al. (2014) and

Cao et al. (2008) values, the apparent opposite trend

toward more monodisperse distributions is consistent

among three of the four case studies. For the retrieved

m to agree with the trend predicted by Williams et al.

(2014) or Cao et al. (2008), a reduction in the drop os-

cillation amplitudes for smaller drops would be required

so that predicted L values are higher. However, this

would not explain the difference between the May re-

trieval results and the predicted m from disdrometer

measurements; we estimate that it would require oscil-

lations that are at least an order of magnitude larger to

bring these median m estimates into agreement with

Williams et al. (2014) or Cao et al. (2008). An incorrect

parameterization of the drop oscillations alone is un-

likely to be able to account for the disagreement with

Williams et al. (2014) and Cao et al. (2008); however, to

better establish the accuracy of the technique, a better

quantification of raindrop oscillations is desirable.

The m estimates derived using radar are sensitive to

higher moments of the DSD, whereas disdrometer

estimates tend to use lower moments of the DSD (Cao

and Zhang 2009). This could be partly responsible for

the differences between the radar- and disdrometer-

estimated m values. If the DSD shape is not perfectly

described by Eq. (1), the ‘‘effective’’ m that is derived

may be different even if the underlyingDSD shape is the

same. It is also possible that what we have captured is

simply the natural variability of the DSD in different

types of rainfall (i.e., convective and stratiform), and

there is not a universal m–Dm relationship. More case

studies are needed to gather a statistical understanding

of the behavior of m using this retrieval method.

Implications for the operational use of L

Operational radar networks favor the use of rapid

scan rates to maximize sample frequency and total

sample volume. For Met Office radars observing rain

with 1m s21 Doppler spectral width, each gate con-

tainsNIQ ’ 11 (sL ’ 0.3). Clearly, many moreNIQ are

needed than are available for individual gate estimates

ofm. Greatermeasurement precision can be achieved by

averaging (with the confidence interval computed using

the aggregated number of independent I and Q sam-

ples), and assuming m is spatially conserved over the

FIG. 10. Box plot of retrieved m as a function of ZDR for ZDR bins of 0.2 dB on 25 Nov 2014,

showing the median and interquartile range of the data.
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chosen averaging area. To obtain a m estimate over ap-

proximately 1 km2, for example, would require the av-

eraging of two rays and 10 gates (at a range from the

radar of 30 km); this L estimate would be calculated

using NIQ 5 220 (sL ’ 0.058). Whereas this may not

be sufficient to distinguish m to as high a resolution as

our retrieval (which uses long dwells and NIQ . 1000),

this will at least be able to decipher whether m is ‘‘high’’

or ‘‘low.’’ Practically, as illustrated in Fig. 1, this may be

all that is necessary to offer improved rain-rate esti-

mates; it is relatively unimportant whether m is 8 or 16,

but it is very important to know if it is 0 or 4. Therefore,

this method could (with sufficient care to ensure only

rain echoes and good SNR) allow for improved rain rates

usingZ,ZDR, andLwhen compared with onlyZ andZDR.

For the typical sL used in these calculations, we can

approximate the error on the retrieved rain rate by

considering the contribution ofsL to the uncertainty inm.

For a ‘‘typical’’ m of 6, the range of retrieved m is about

64. By referring to Fig. 1, we can see that this

corresponds to a difference in the rain rate of 60.5 dB,

or 612.5%. The impact of uncertainty in m on the rain

rate is almost constant for allZDR (each of them lines are

approximately parallel in Fig. 1 for ZDR * 0.5 dB).

Therefore, this error will decrease for higher rain rates

as the contribution of sL to the uncertainty in

m decreases as a function of ZDR.

9. Conclusions

In this paper, a new variable, L52log10(12 rhv), is

defined that is Gaussian distributed with a width

predictable by the number of independent I and Q

samples, which in turn can be estimated using the

Doppler spectral width. This allows, for the first time,

the construction of rigorous confidence intervals on

each rhv measurement. The predicted errors using this

new method were verified using high-quality mea-

surements in drizzle from the Chilbolton Advanced

Meteorological Radar.

FIG. 11. Median retrieved m as a function of ZDR for ZDR bins of 0.1 dB for case studies of

31 Jan, 25 Apr, 22May, and 25 Nov 2014. The solid gray line is the predicted m as a function of

ZDR from the power-law fit to the disdrometer measurements of Williams et al. (2014), and

sm corresponds to the dashed gray upper and lower bounds that contain 55% of the data. The

solid black line shows the predicted m–ZDR relationship using the m–L relationship of Cao

et al. (2008).
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The proposed method is of much greater practical use

than the linear perturbation error estimation method, as

it does not require knowledge of the unknown ‘‘true’’ rhv
that one is trying to estimate. The method works for

both simultaneous or accurately interpolated alternate

sampling. However, it does not work for alternate esti-

mators, which rely on the Gaussian autocorrelation

function to estimate the zero-lag correlation betweenH

and V pulses (Sachidananda and Zrnić 1989), where rhv
estimates can be .1.

A new technique to account for the imperfect collo-

cation of H and V sampling volumes on rhv measure-

ments is presented. The impact of drop oscillations on the

observed L measurements was shown to be significant;

omitting oscillations from our Gans simulations leads to

an underestimate of retrieved m of approximately 8. We

further show that failure to use L over rhv measurements

when averaging can lead to a significant bias low in rhv
estimates (and consequently m), particularly for very

short dwell times such as those used operationally.

High-precisionmeasurements ofL andZDR in rainfall

are then used to estimate m in the gamma DSD for four

case studies.We find that our estimates ofm in stratiform

rain somewhat agree in magnitude with those from

disdrometer studies for small ZDR, but there appears to

be a tendency toward more monodisperse DSDs be-

tween ZDR 5 0.8 and 1.5 dB, unlike the trend toward an

exponential distribution suggested by disdrometer

measurements. The convective case study does display

this trend toward lower m as ZDR increases, but the

magnitude of m remains much larger than predicted by

disdrometer measurements. If true, this would lead to

overestimates of retrieved rain rate by approximately

1 dB if the m–Dm relationship of Williams et al. (2014) is

used, or 2 dB if an exponential distribution or the m–L
relationship of Cao et al. (2008) is used. We find that the

m retrieval exhibits sensitivity to the choice of the drop

oscillation model. A better understanding of raindrop

oscillations would be useful to fully establish the accu-

racy of our retrieval technique.

The variability in our radar-retrieved m could simply

be the natural variability of the DSD between convec-

tive and stratiform rainfall; there may not be a universal

m–D0 relationship. More case studies are desirable to

investigate this further.

The m retrieval technique employed here offers im-

provements over the radar estimates of Illingworth and

Caylor (1991) and Thurai et al. (2008). Illingworth and

Caylor (1991) did not take into account the imperfect

collocation of the H and V sample volumes on mea-

surements of rhv, the effect of drop oscillations, or the

fact their rhv estimates would be biased low by averaging

short time series. Each of these effects would cause m to

be underestimated. The same is true of Thurai et al.

(2008); however, drop shapes measured by 2DVD

measurements include oscillations, and so are included

in their m estimates.

The new error statistics of rhv presented here could aid

operational applications that require uncertainty on r̂hv
to be quantified, or use averages of r̂hv. The use of L

operationally to retrieve m is limited by the use of rapid

scan rates and the corresponding few independent I and

Q samples. However, assuming that m is a smoothly

varying parameter, averaging L could help improve rain-

rate retrievals; the uncertainty on operationally retrieved

rain rates using the retrieval technique presented here is

estimated to be approximately 612.5%. Practically, re-

trieved rain rates are less affected by changes in higher

values of m than by changes in lower values. Therefore,

operationally, simply being able to distinguish between

regions of ‘‘high’’ and ‘‘low’’ m with L could be sufficient

to provide an improvement over existingZ–ZDR retrieval

techniques.
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APPENDIX

The Effect of Imperfectly Collocated H and V
Samples on rhv

Consider two measurements of the (complex) ampli-

tudes at horizontal and vertical polarizations AH and

AV . If the two polarizations do not have perfectly

matched sample volumes, then each amplitude is the

sum of (i) a component that is common to both polari-

zations CH and CV and (ii) a component that is differ-

ent for each polarization DH and DV :

A
H
5C

H
1D

H
(A1)

(and similarly AV 5CV 1DV). The copolar correlation

coefficient is

r
hv
5

�A
H
A

V
*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�jA
H
j2�jA

V
j2

q , (A2)

where the sums S are taken overmany reshufflings of the

raindrops. Substituting in the expressions forAH andAV

leads to
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r
hv
5
�C

H
C

V
* 1�D

H
C

V
* 1�C

H
D

V
* 1�D

H
D

V
*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�jC
H
1D

H
j2�jC

V
1D

V
j2

q .

(A3)

The first term in the numerator dominates as the number

of pulses is increased. This is because DH and DV are

uncorrelated withCV andCH (because the reshuffling of

particles in the different sample volumes is not con-

nected or organized in any way) whereas CH and CV are

highly correlated (because the true rhv is close to 1). The

final term is small becauseDH andDV are not correlated

(by the same argument), and this term is small in any

case since jDj� jCj.
This leaves the following:

r
hv
5

�C
H
C

V
*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�jC
H
1D

H
j2�jC

V
1D

V
j2

q . (A4)

In the case of a perfect radar with perfect collocation of

theH and V samples, thenDH and DV are zero and we

get a correlation coefficient that is the true rhv, which we

are trying to obtain [i.e., setting A 5 C in Eq. (A2)].

In general, for an imperfect radar, we have

DH and DV . 0 and from the results above we see that

r
hv
5 rtruehv 3 fmax

hv , (A5)

where

fmax
hv 5

 
�jC

H
j2

�jC
H
1D

H
j2 3

�jC
V
j2

�jC
V
1D

V
j2
!1/2

. (A6)

This result is directly analogous to the results of Bringi

et al. (1983) on rhv in the presence of noise. If we identify

C as our ‘‘signal’’ and D as our ‘‘noise,’’ this equation is

identical to Eq. (A1).

Crucially, the relationship between the true rhv (r
true
hv )

and the one that is actually observed is determined simply

by how much power (on average over many pulses)

comes from the particles that are different for the H and

V sample volumes, relative to how much power comes

from the particles that are common to the H and V

sample volumes, and that this factor should be constant

for different microphysical situations. Thus, if we can

measure rhv in drizzle where we know rtruehv 5 1, then the

measured rhv is simply equal to fmax
hv . This scaling factor

can then be applied to data from all other situations.
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Sachidananda, M., and D. Zrnić, 1989: Efficient processing of alter-

nately polarized radar signals. J. Atmos.Oceanic Technol., 6, 173–

181, doi:10.1175/1520-0426(1989)006,0173:EPOAPR.2.0.CO;2.

Schafer, R., S. Avery, P. May, D. Rajopadhyaya, and C. Williams,

2002: Estimation of rainfall drop size distributions from dual-

frequency wind profiler spectra using deconvolution and a

nonlinear least squares fitting technique. J. Atmos. Oceanic

Technol., 19, 864–874, doi:10.1175/1520-0426(2002)019,0864:

EORDSD.2.0.CO;2.

Seliga, T., and V. Bringi, 1976: Potential use of radar differential

reflectivity measurements at orthogonal polarizations for

measuring precipitation. J. Appl. Meteor., 15, 69–76,

doi:10.1175/1520-0450(1976)015,0069:PUORDR.2.0.CO;2.

Szakáll, M., K. Diehl, S. K. Mitra, and S. Borrmann, 2008: A wind

tunnel study on the oscillation of freely falling raindrops.Proc.

Fifth European Conf. on Radar inMeteorology andHydrology

(ERAD 2008), Helsinki, Finland, Finnish Meteorological In-

stitute, paper 7.6.

——, S. K. Mitra, K. Diehl, and S. Borrmann, 2010: Shapes and

oscillations of falling raindrops—A review. Atmos. Res., 97,

416–425, doi:10.1016/j.atmosres.2010.03.024.

——, S. Kessler, K. Diehl, S. K. Mitra, and S. Borrmann, 2014: A

wind tunnel study of the effects of collision processes on the

shape and oscillation for moderate-size raindrops. Atmos.

Res., 142, 67–78, doi:10.1016/j.atmosres.2013.09.005.

Tabary, P., A. Le Henaff, G. Vulpiani, J. Parent-du Châtelet, and

J. Gourley, 2006: Melting layer characterization and identifi-

cation with a C-band dual-polarization radar: A long-term

analysis. Proc. Fourth European Radar Conf. on Radar in

Meteorology and Hydrology, Barcelona, Spain, Centre de

Recerca Aplicada en Hidrometeorologia, 17–20.

Tang, L., J. Zhang, C. Langston, J. Krause, K. Howard, and

V. Lakshmanan, 2014: A physically based precipitation–

nonprecipitation radar echo classifier using polarimetric and

environmental data in a real-time national system. Wea.

Forecasting, 29, 1106–1119, doi:10.1175/WAF-D-13-00072.1.

Thurai, M., and V. Bringi, 2005: Drop axis ratios from a 2D video

disdrometer. J. Atmos. Oceanic Technol., 22, 966–978, doi:10.1175/

JTECH1767.1.

——,D.Hudak, andV. Bringi, 2008: On the possible use of copolar

correlation coefficient for improving the drop size distribution

estimates at C band. J. Atmos. Oceanic Technol., 25, 1873–

1880, doi:10.1175/2008JTECHA1077.1.

——, M. Szakáll, V. N. Bringi, and S. K. Mitra, 2013: Collision-

induced drop oscillations from wind-tunnel experiments.

Proc. 36th Conf. on Radar Meteorology, Breckenridge, CO,

Amer. Meteor. Soc., 9B.2. [Available online at https://ams.

confex.com/ams/36Radar/webprogram/Paper228158.html.]

Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of

drop size distribution measurements by impact and optical

disdrometers. J. Appl. Meteor., 40, 2083–2097, doi:10.1175/
1520-0450(2001)040,2083:CODSDM.2.0.CO;2.

Torlaschi, E., and Y. Gingras, 2003: Standard deviation of the co-

polar correlation coefficient for simultaneous transmission

and reception of vertical and horizontal polarized weather

radar signals. J. Atmos. Oceanic Technol., 20, 760–766,

doi:10.1175/1520-0426(2003)20,760:SDOTCC.2.0.CO;2.

Ulbrich, C. W., 1983: Natural variations in the analytical form of

the raindrop size distribution. J. Climate Appl. Meteor., 22,
1764–1775, doi:10.1175/1520-0450(1983)022,1764:

NVITAF.2.0.CO;2.

Unal, C., 2015: High resolution raindrop size distribution retrieval

based on the Doppler spectrum in the case of slant profiling

radar. J. Atmos. Oceanic Technol., 32, 1191–1208, doi:10.1175/

JTECH-D-13-00225.1.

Williams, C. R., 2002: Simultaneous ambient air motion and

raindrop size distributions retrieved from UHF vertical in-

cident profiler observations. Radio Sci., 37, doi:10.1029/

2000RS002603.

——, and Coauthors, 2014: Describing the shape of raindrop size

distributions using uncorrelated raindrop mass spectrum pa-

rameters. J. Appl.Meteor. Climatol., 53, 1282–1296, doi:10.1175/

JAMC-D-13-076.1.

Wilson, D. R., A. J. Illingworth, and T. M. Blackman, 1997: Dif-

ferential Doppler velocity: A radar parameter for character-

izing hydrometeor size distributions. J. Appl. Meteor., 36,

649–663, doi:10.1175/1520-0450-36.6.649.

1632 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 55

http://dx.doi.org/10.1175/1520-0426(1987)004<0634:RALACP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1987)004<0634:RALACP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1998)055<0283:FPOPPI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1998)055<0283:FPOPPI>2.0.CO;2
http://dx.doi.org/10.1002/qj.2209
http://dx.doi.org/10.1175/1520-0426(1994)011<0950:AOTCCC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1994)011<0950:AOTCCC>2.0.CO;2
http://dx.doi.org/10.1256/qj.03.98
http://dx.doi.org/10.1175/2008WAF2222205.1
http://dx.doi.org/10.1175/1520-0469(1989)046<2469:RCR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1989)006<0173:EPOAPR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2002)019<0864:EORDSD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2002)019<0864:EORDSD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
http://dx.doi.org/10.1016/j.atmosres.2010.03.024
http://dx.doi.org/10.1016/j.atmosres.2013.09.005
http://dx.doi.org/10.1175/WAF-D-13-00072.1
http://dx.doi.org/10.1175/JTECH1767.1
http://dx.doi.org/10.1175/JTECH1767.1
http://dx.doi.org/10.1175/2008JTECHA1077.1
https://ams.confex.com/ams/36Radar/webprogram/Paper228158.html
https://ams.confex.com/ams/36Radar/webprogram/Paper228158.html
http://dx.doi.org/10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2003)20<760:SDOTCC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
http://dx.doi.org/10.1175/JTECH-D-13-00225.1
http://dx.doi.org/10.1175/JTECH-D-13-00225.1
http://dx.doi.org/10.1029/2000RS002603
http://dx.doi.org/10.1029/2000RS002603
http://dx.doi.org/10.1175/JAMC-D-13-076.1
http://dx.doi.org/10.1175/JAMC-D-13-076.1
http://dx.doi.org/10.1175/1520-0450-36.6.649

