186 research outputs found

    L-band ATS 5/Orion/S. S. Manhattan marine navigation and communication experiment Final report

    Get PDF
    L-band signals relayed by synchronous satellite for navigation and data communicatio

    Influence of activator type on reaction kinetics, setting time, and compressive strength of alkali-activated mineral wools

    Get PDF
    Alkali activation is a promising utilisation route for mineral wool wastes, due to suitable chemical composition, high reactivity, and surface area. One key factor in the development of alkali-activated binders is the selection of the suitable alkali activator. Here, the effect of sodium hydroxide, sodium silicate, sodium aluminate, and sodium carbonate solution on the alkali-activation kinetics of two main types of mineral wools, stone wool and glass wool, is investigated. Setting time and compressive strength development results are presented, which are explained and discussed in the context of isothermal calorimeter data obtained at temperature of 40 °C. Sodium hydroxide and sodium silicate solutions provided fast reaction with both mineral wools, evidenced by high heat release, high early strength, and fast setting. The reaction with sodium aluminate solution took several days to initiate, but it produced high compressive strength after 28 days of curing with both mineral wools. Glass wool reacted and hardened rapidly with sodium carbonate solution, but stone wool reacted slowly with sodium carbonate and exhibited a low extent of reaction, likely due to lower extent of reaction of stone wool under less alkaline conditions. These results show that mineral wool alkali activation kinetics and binder gel formation are controlled by the activator type and highlight the importance of choosing the most appropriate activator for each desired application

    Nanostructural evolution of alkali-activated mineral wools

    Get PDF
    Mineral wools are the most widely used building insulation material worldwide. Annually, 2.5 million tonnes of mineral wool waste are generated in the EU alone, and this is a largely unutilised material that is landfilled or incinerated. However, mineral wool wastes are promising precursors for production of alkali-activated cementitious binders due to their favourable chemical and mineralogical composition and high surface area. Alkali-activation is therefore a valuable route for valorisation of large quantities of mineral wool waste. This study resolves the phase assemblage and nanostructure of reaction products formed upon alkali activation of stone wool and glass wool by sodium hydroxide and sodium silicate solutions with X-ray diffraction, electron microscopy and solid state nuclear magnetic resonance spectroscopy experiments probing ^27Al and ^29Si. The stone wool-based alkali-activated binder comprises an amorphous sodium- and aluminium-substituted calcium silicate hydrate (C-(N-)A-S-H) gel, an amorphous sodium aluminosilicate hydrate (N-A-S-H) gel and small amounts of the layered double hydroxide phase quintinite and zeolite F. The glass wool-based alkali-activated binder comprises an amorphous Ca- and Al-substituted sodium silicate (N-(C-)(A-)S–H) gel. Gel chemical composition and reaction kinetics of alkali-activated mineral wools are shown to be dependent on the activating solution chemistry, with reaction rate and extent promoted by inclusion of a source of soluble Si in the reaction mixture. This work provides the most advanced description of the chemistry and structure of alkali-activated mineral wools to date, yielding new insight that is essential in developing valorisation pathways for mineral wools by alkali activation and providing significant impetus for development of sustainable construction materials

    Production and properties of ferrite-rich CSAB cement from metallurgical industry residues

    Get PDF
    Blast furnace slag from the steel industry is commercially utilized as a cement replacement material without major processing requirements; however, there are many unutilized steel production slags which differ considerably from the blast furnace slag in chemical and physical properties. In this study, calcium sulfoaluminate belite (CSAB) cement clinkers were produced using generally unutilized metallurgical industry residues: AOD (Argon Oxygen Decarburisation) slag from stainless steel production, Fe slag from zinc production, and fayalitic slag from nickel production. CSAB clinker with a target composition of ye'elimite-belite-ferrite was produced by firing raw materials at 1300 °C. The phase composition of the produced clinkers was identified using quantitative XRD analyses, and the chemical composition of the clinker phases produced was established using FESEM-EDS and mechanical properties were tested through compressive strength test. It is demonstrated that these metallurgical residues can be used successfully as alternative raw materials for the production of CSAB cement that can be used for special applications. In addition, it is shown that the available quantities of these side-streams are enough for significant replacement of virgin raw materials used in cement production

    Alternative raw materials for the production of calcium sulfoaluminate cement : ladle slag and phosphogypsum

    Get PDF
    Calcium sulfoaluminate belite (CSAB) cement clinkers were produced using two industrial by-products: ladle slag and phosphogypsum. The phase composition of the produced clinkers was identified using quantitative XRD analyses, and the chemical composition of the clinker phases produced from phosphogypsum was established using FESEM-EDS. We demonstrate that ladle slag and phosphogypsum can be used as alternative raw materials for the production of CSAB cement. We also show that phosphorous from the phosphogypsum can be incorporated into the larnite crystal structure. The mechanical properties of the hydrated/hardened cement are also presented and are comparable with those produced from reagent-grade materials

    Towards designing reactive glasses for alkali activation : understanding the origins of alkaline reactivity of Na-Mg aluminosilicate glasses

    Get PDF
    Alkali-activated materials (AAMs), sometimes called geopolymers, are eco-friendly cementitious materials with reduced carbon emissions when compared to ordinary Portland cement. However, the availability of most precursors used for AAM production may decline in the future because of changes in industrial sectors. Thus, new precursors must be developed. Recently there has been increased interest in synthetic glass precursors. One major concern with using synthetic glasses is ensuring that they react sufficiently under alkaline conditions. Reactivity is a necessary, although not sufficient, requirement for a suitable precursor for AAMs. This work involves the synthesis, characterization, and estimation of alkaline reactivity of Na-Mg aluminosilicate glasses. Structural characterization showed that replacing Na with Mg led to more depolymerization. Alkaline reactivity studies indicated that, as Mg replaced Na, reactivity of glasses increased at first, reached an optimal value, and then declined. This trend in reactivity could not be explained by the conventional parameters used for estimating glass reactivity: the non-bridging oxygen fraction (which predicts similar reactivity for all glasses) and optical basicity (which predicts a decrease in reactivity with an increase in Mg replacement). The reactivity of the studied glasses was found to depend on two main factors: depolymerization (as indicated by structural characterization) and optical basicity. Depolymerization dominated initially, which led to an increase in reactivity, while the effect of optical basicity dominated later, leading to a decrease in reactivity. Hence, while designing reactive synthetic glasses for alkali activation, structural study of glasses should be given due consideration in addition to the conventional factors

    Ferritic calcium sulfoaluminate belite cement from metallurgical industry residues and phosphogypsum : clinker production, scale-up, and microstructural characterisation

    Get PDF
    The production of ferrite-rich calcium sulfoaluminate belite (CSABF) cement clinker, also containing MgO, from ladle slag, Fe-slag, and phosphogypsum was translated from a lab-scale to a pilot demonstration in a 7-metre kiln at 1260 °C. An account of the pilot trials/manufacturing is presented, and the process was robust. Laboratory tests prior to scale-up showed that gehlenite formation can be inhibited in the CSABF clinker by adding excess CaO in the raw meal; however, this reduces the amount of iron (Fe) that can be incorporated into ye'elimite and leads to higher ferrite (C6AF2) content. Detailed microstructural analyses were performed on the clinker to reveal the clinker composition as well as the partition of the minor elements. Different ferrite phases with varying amounts of titanium and iron are distinguished. Eighty-five percent of the clinker raw meal was comprised of side-stream materials and the clinker produced in the kiln had chemical raw-material CO2 emissions 90% lower than that of Portland cement made from virgin raw materials. These results can have a significant impact in regions with a prospering metallurgical industry, enabling industrial decarbonisation and resource efficiency

    Evidence of formation of an amorphous magnesium silicate (AMS) phase during alkali activation of (Na-Mg) aluminosilicate glasses

    Get PDF
    There is some ambiguity regarding the fate of Mg during the alkali activation of Mg-rich precursors within the broader field of alkali activated materials (AAMs). The present work addresses this issue by studying the reaction products in AAMs synthesized from (Na-Mg) aluminosilicate glasses. Here, instead of magnesium silicate hydrate (M-S-H) phase, Mg exclusively forms an amorphous magnesium silicate (AMS) phase. Compared to M-S-H, AMS is a more depolymerized phase, which has not previously been well documented. The formation of AMS seems to be driven by the high charge density of the Mg cation which effectively stabilizes the depolymerized silicate species. We also show that the lack of hydrotalcite-group phases is due to aluminum depletion by zeolite formation. This work highlights the need to consider the existence of the AMS phase in Mg-containing AAMs, especially in complex systems, where its identification may be difficult
    • …
    corecore