171 research outputs found

    Prediction of stillbirth from placental growth factor at 19-24 weeks

    Get PDF
    Objectives: To investigate whether measurement of maternal serum placental growth factor (PLGF) at 19-24 weeks’ gestation improves the performance of screening for stillbirths that is achieved by a combination of maternal factors, fetal biometry and uterine artery pulsatility index (UT-PI) and evaluate the performance of screening of this model for all stillbirths and those due to impaired placentation and unexplained or other causes. Methods: This was a prospective screening study of 70,003 singleton pregnancies including 268 stillbirths, carried out in two phases. The first phase, which included prospective measurements of UT-PI and fetal biometry were available in all cases. The second phase included prospective measurements of maternal serum PLGF which were available for 9,870 live births and 86 antepartum stillbirths. The values of PLGF obtained from this screening study were simulated in the remaining cases based on bivariate Gaussian distributions, defined by the mean and standard deviations. Multivariate logistic regression analysis was used to determine whether the addition of maternal serum PLGF improved the performance of screening that was achieved by a combination of maternal factors, fetal biometry and UT-PI. Results: Significant contribution to the prediction of stillbirths was provided by maternal factor derived a priori risk, MoM values of PLGF, UT-PI and fetal biometry Z-scores. A model combining these variables predicted 58% of all stillbirths and 84% of those due to impaired placentation, at false positive rate of 10%; within the impaired placentation group the detection rate of stillbirth at 37 weeks (97% vs 61%; p<0.01). Conclusions: A high proportion of stillbirths due to impaired placentation can be effectively identified in the second trimester of pregnancy

    Goodness-of-fit measures of evenness: a new tool for exploring changes in community structure

    Get PDF
    Growing concern about the fate of biodiversity, highlighted by the Convention on Biological Diversity's 2010 and 2020 targets for stemming biodiversity loss, has intensified interest in methods of assessing change in ecological communities through time. Biodiversity is a multivariate concept, which cannot be well‐represented by a single measure. However, diversity profiles summarize the multivariate nature of multi‐species datasets, and allow a more nuanced interpretation of biodiversity trends than unitary metrics. Here we introduce a new approach to diversity profiling. Our method is based on the knowledge that an ecological community is never completely even and uses this departure from perfect evenness as a novel and insightful way of measuring diversity. We plot our measure of departure as a function of a free parameter, to generate “evenness profiles”. These profiles allow us to separate changes due to dominant species from those due to rare species, and relate these patterns to shifts in overall diversity. This separation of the influence of dominance and rarity on overall diversity enables the user to uncover changes in diversity that would be masked in other methods. We discuss profiling techniques based on this parametric family, and explore its connections with existing diversity indices. Next, we evaluate our approach in terms of predicted community structure (following Tokeshi's niche models) and present an example assessing temporal trends in diversity of British farmland birds. We conclude that this method is an informative and tractable parametric approach for quantifying evenness. It provides novel insights into community structure, revealing the contributions of both rare and common species to biodiversity trends

    Environmental cycles and individual variation in the vertical movements of a benthic elasmobranch

    Get PDF
    This research was supported by a PhD Studentship at the University of St Andrews, jointly funded by NatureScot via the Marine Alliance for Science and Technology for Scotland (MASTS), and the Centre for Research into Ecological and Environmental Modelling. The data were collected as part of research funded by NatureScot (project 015960) and Marine Scotland (projects SP004 and SP02B0) and the Movement Ecology of Flapper Skate (MEFS) project funded by the same organisations. Additional funding was provided from MASTS, in the form of a Small Research Grant, and Shark Guardian. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Trends in depth and vertical activity reflect the behaviour, habitat use and habitat preferences of marine organisms. However, among elasmobranchs, research has focused heavily on pelagic sharks, while the vertical movements of benthic elasmobranchs, such as skate (Rajidae), remain understudied. In this study, the vertical movements of the Critically Endangered flapper skate (Dipturus intermedius) were investigated using archival depth data collected at 2 min intervals from 21 individuals off the west coast of Scotland (56.5°N, −5.5°W) in 2016–17. Depth records comprised nearly four million observations and included eight time series longer than 1 year, forming one of the most comprehensive datasets collected on the movement of any skate to date. Additive modelling and functional data analysis were used to investigate vertical movements in relation to environmental cycles and individual characteristics. Vertical movements were dominated by individual variation but included prolonged periods of limited activity and more extensive movements that were associated with tidal, diel, lunar and seasonal cycles. Diel patterns were strongest, with irregular but frequent movements into shallower water at night, especially in autumn and winter. This research strengthens the evidence for vertical movements in relation to environmental cycles in benthic species and demonstrates a widely applicable flexible regression framework for movement research that recognises the importance of both individual-specific and group-level variation.Publisher PDFPeer reviewe

    Understanding species distribution in dynamic populations : a new approach using spatio‐temporal point process models

    Get PDF
    Funding: EU consolidator’s grant STATEMIG 310820 (SB).Understanding and predicting a species’ distribution across a landscape is of central importance in ecology, biogeography and conservation biology. However, it presents daunting challenges when populations are highly dynamic (i.e. increasing or decreasing their ranges), particularly for small populations where information about ecology and life history traits is lacking. Currently, many modelling approaches fail to distinguish whether a site is unoccupied because the available habitat is unsuitable or because a species expanding its range has not arrived at the site yet. As a result, habitat that is indeed suitable may appear unsuitable. To overcome some of these limitations, we use a statistical modelling approach based on spatio‐temporal log‐Gaussian Cox processes. These model the spatial distribution of the species across available habitat and how this distribution changes over time, relative to covariates. In addition, the model explicitly accounts for spatio‐temporal dynamics that are unaccounted for by covariates through a spatio‐temporal stochastic process. We illustrate the approach by predicting the distribution of a recently established population of Eurasian cranes Grus grus in England, UK, and estimate the effect of a reintroduction in the range expansion of the population. Our models show that wetland extent and perimeter‐to‐area ratio have a positive and negative effect, respectively, in crane colonisation probability. Moreover, we find that cranes are more likely to colonise areas near already occupied wetlands and that the colonisation process is progressing at a low rate. Finally, the reintroduction of cranes in SW England can be considered a human‐assisted long‐distance dispersal event that has increased the dispersal potential of the species along a longitudinal axis in S England. Spatio‐temporal log‐Gaussian Cox process models offer an excellent opportunity for the study of species where information on life history traits is lacking, since these are represented through the spatio‐temporal dynamics reflected in the model.PostprintPeer reviewe

    Graph-based simulated annealing: a hybrid approach to stochastic modeling of complex microstructures

    Get PDF
    A stochastic model is proposed for the efficient simulation of complex three-dimensional microstructures consisting of two different phases. The model is based on a hybrid approach, where in a first step a graph model is developed using ideas from stochastic geometry. Subsequently, the microstructure model is built by applying simulated annealing to the graph model. As an example of application, the model is fitted to a tomographic image describing the microstructure of electrodes in Li-ion batteries. The goodness of model fit is validated by comparing morphological characteristics of experimental and simulated data

    Multiwavelength Studies of Young OB Associations

    Full text link
    We discuss how contemporary multiwavelength observations of young OB-dominated clusters address long-standing astrophysical questions: Do clusters form rapidly or slowly with an age spread? When do clusters expand and disperse to constitute the field star population? Do rich clusters form by amalgamation of smaller subclusters? What is the pattern and duration of cluster formation in massive star forming regions (MSFRs)? Past observational difficulties in obtaining good stellar censuses of MSFRs have been alleviated in recent studies that combine X-ray and infrared surveys to obtain rich, though still incomplete, censuses of young stars in MSFRs. We describe here one of these efforts, the MYStIX project, that produced a catalog of 31,784 probable members of 20 MSFRs. We find that age spread within clusters are real in the sense that the stars in the core formed after the cluster halo. Cluster expansion is seen in the ensemble of (sub)clusters, and older dispersing populations are found across MSFRs. Direct evidence for subcluster merging is still unconvincing. Long-lived, asynchronous star formation is pervasive across MSFRs.Comment: 22 pages, 9 figures. To appear in "The Origin of Stellar Clusters", edited by Steven Stahler, Springer, 2017, in pres

    Predicting the Distribution of Spiral Waves from Cell Properties in a Developmental-Path Model of Dictyostelium Pattern Formation

    Get PDF
    The slime mold Dictyostelium discoideum is one of the model systems of biological pattern formation. One of the most successful answers to the challenge of establishing a spiral wave pattern in a colony of homogeneously distributed D. discoideum cells has been the suggestion of a developmental path the cells follow (Lauzeral and coworkers). This is a well-defined change in properties each cell undergoes on a longer time scale than the typical dynamics of the cell. Here we show that this concept leads to an inhomogeneous and systematic spatial distribution of spiral waves, which can be predicted from the distribution of cells on the developmental path. We propose specific experiments for checking whether such systematics are also found in data and thus, indirectly, provide evidence of a developmental path

    Physicochemical Control of Caribbean Coral Calcification Linked to Host and Symbiont Responses to Varying pCO2 and Temperature

    Get PDF
    It is thought that the active physiological regulation of the chemistry of a parent fluid is an important process in the biomineralization of scleractinian corals. Biological regulation of calcification fluid pH (pHCF) and other carbonate chemistry parameters ([CO32−]CF, DICCF, and ΩCF) may be challenged by CO2 driven acidification and temperature. Here, we examine the combined influence of changing temperature and CO2 on calcifying fluid regulation in four common Caribbean coral species—Porites astreoides, Pseudodiploria strigosa, Undaria tenuifolia, and Siderastrea siderea. We utilize skeletal boron geochemistry (B/Ca and ÎŽ11B) to probe the pHCF, [CO32−]CF, and DICCF regulation in these corals, and ÎŽ13C to track changes in the sources of carbon for calcification. Temperature was found to not influence pHCF regulation across all pCO2 treatments in these corals, in contrast to recent studies on Indo-Pacific pocilloporid corals. We find that [DIC]CF is significantly lower at higher temperatures in all the corals, and that the higher temperature was associated with depletion of host energy reserves, suggesting [DIC]CF reductions may result from reduced input of respired CO2 to the DIC pool for calcification. In addition, ÎŽ13C data suggest that under high temperature and CO2 conditions, algal symbiont photosynthesis continues to influence the calcification pool and is associated with low [DIC]CF in P. strigosa and P. astreoides. In P. astreoides this effect is also associated with an increase in chlorophyll a concentration in coral tissues at higher temperatures. These observations collectively support the assertion that physicochemical control over coral calcifying fluid chemistry is coupled to host and symbiont physiological responses to environmental change, and reveals interspecific differences in the extent and nature of this coupling

    The Ciliate Paramecium Shows Higher Motility in Non-Uniform Chemical Landscapes

    Get PDF
    We study the motility behavior of the unicellular protozoan Paramecium tetraurelia in a microfluidic device that can be prepared with a landscape of attracting or repelling chemicals. We investigate the spatial distribution of the positions of the individuals at different time points with methods from spatial statistics and Poisson random point fields. This makes quantitative the informal notion of “uniform distribution” (or lack thereof). Our device is characterized by the absence of large systematic biases due to gravitation and fluid flow. It has the potential to be applied to the study of other aquatic chemosensitive organisms as well. This may result in better diagnostic devices for environmental pollutants.University of Wisconsin--Milwaukee (SURF (Salary for Undergraduate Research Fellows) Award)National Science Foundation (U.S.) (grant DMS-016214
    • 

    corecore