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16.1 Spatial Point Process Theory

16.1.1 Introduction

A spatial point process is a stochastic process each of whose realizations consists of a finite or
countably infinite set of points in the plane. This chapter sets out the mathematical theory
of such processes. After some motivation, several ways to characterize the distribution of
a point process are described in Section 16.1.2. The important notions of Campbell and
moment measures are introduced in Section 16.1.3, and generalized to higher orders in
Section 16.1.4. Interior and exterior conditioning by means of Palm theory form the topic
of Section 16.1.5. The section closes with a discussion of finite point processes and local
specifications (Sections 16.1.6 to 16.1.7).

Tracing the roots of modern point process theory is not an easy task. One may refer
to Poisson (1837), or to the pioneering works by Erlang (1909) and Neyman (1939) in the
respective contexts of telephone networks and spatial cluster processes. Influential classic
textbooks include Janossy (1948), Khinchin (1960), Matheron (1975), Matthes, Kerstan, and
Mecke (1978), and Srinivasan (1974). A rich scholarly reference book is the second edition
of Daley and Vere-Jones (1988) published in two volumes (2003, 2008). A more accessible,
yet rigorous, course on finite point processes is van Lieshout (2000). See also Cox and Isham
(1980) or Reiss (1993).

As a motivating example, consider the pattern of 270 tree locations in a 75 × 75 meter
plot in the Kaluzhskie Zaseki Forest in central Russia depicted in the left-hand panel of
Figure 16.1. The data were kindly provided by Dr. P. Grabarnik and previously analyzed
in Smirnova (1994) and Grabarnik and Chiu (2002).

In a forestry context such as this, competition for nutrients and space may result in
patterns in which large trees do not occur close to each other and smaller trees fill up the
remaining gaps. On the other hand, seedlings tend to grow up close to mature trees, which
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FIGURE 16.1
Trees in a broad-leaved, multispecies old-growth forest in the Kaluzhskie Zaseki Forest in central Russia (Smirnova,
1994; Grabarnik and Chiu, 2002) in a square plot of side length 75 m. (Left) Locations of the 270 trees, (right)
graphical representation in which each tree is located at the center of a disk of radius equal to 0.103 times the tree
diameter.

would result in a cluster of nearby trees. Such apparent clustering can also result from
variations in soil fertility, as trees are more likely to flourish in regions of high fertility.

For these data, additional measurements in the form of tree diameters are available,
graphically represented by the disk radii in the right-hand side panel of Figure 16.1. Such a
pattern with extra information attached to each point (location) is referred to as a “marked
point pattern.” Clusters of small trees in the gaps left by larger trees are apparent. This
clustering effect can be seen even more clearly if we plot the subpatterns of small and large
trees separately (Figure 16.2). The large (old) trees seem, apart from some gaps, to have a
preferred distance of about 4 meters from each other, possibly due to a planting design.

Mapped data such as those depicted in Figure 16.1 and Figure 16.2 can be described
mathematically as a finite, integer-valued measure

I
∑

i=1

ki ∂xi
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FIGURE 16.2
Locations of trees in a broad-leaved, multispecies old-growth forest (Smirnova, 1994; Grabarnik and Chiu, 2002)
in a square plot of side length 75 m. (Left) Trees with diameter less than 15 cm, (right) those with diameter larger
than 25 cm.
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where I ∈ N0, the xi are distinct (marked) points in some topological space D, and each
weight ki is a strictly positive integer, the multiplicity of xi . An equivalent description is in
terms of a finite, unordered set of not necessarily distinct (marked) points

X = {x1, . . . , xn} ∈ Dn/ ≡, n = 0, 1, . . . .

The xi lie in a topological space D, and two or more (x1, . . . , xn) ∈ Dn that are identical up
to permutation are indistinguishable. We shall refer to X as a configuration.

For example, for the unmarked pattern depicted in the left-hand panel of Figure 16.1, D =

[0, 75]2 equipped with the Euclidean distance topology, while marked points represented
graphically in the right-hand panel of Figure 16.1 lie in the product space [0, 75]2 × [0, ∞)
generated by the Euclidean topologies on [0, 75]2 and [0, ∞). More precisely, if U and V
are open neighborhoods of x ∈ [0, 75]2 and m ∈ [0, ∞), respectively, then we may define an
open neighborhood of (x, m) by U × V. The class of such product sets defines a topology,
the product topology. Equivalently, the product topology can be defined by the supremum
metric. In order to obtain Figure 16.2, trees were marked by a type label in the set {large,
small} equipped with the discrete metric.

If D is not bounded, the requirement that I or n be finite is relaxed to allow configurations
that contain a countable number of points, each with finite multiplicity. Such a configuration
X ⊆ D is said to be locally finite if it places at most a finite number of points in any bounded
Borel set A ⊆ D, that is, if

NX ( A) =

∞
∑

i=1

ki ∂xi
( A) < ∞.

The family of all locally finite configurations will be denoted by Nlf.

Definition 16.1
Let (D, d) be a complete, separable metric space equipped with its Borel σ -algebra B. A point
process on D is a mapping X from a probability space (Ω , A, P) into Nlf such that for all bounded
Borel sets A ⊆ D, the number N( A) = NX( A) of points falling in A is a (finite) random variable.

From a practical point of view, it is convenient to work with metric spaces. Theoretically,
the topological structure is needed to ensure the existence of regular versions of Palm
distributions and related characteristics that will be discussed later.

Definition 16.1 may be rephrased as follows. A point process X is a random variable with
values in the measurable space (Nlf, N lf), where N lf is the smallest σ -algebra such that
for all bounded Borel sets A ⊆ D, the mapping X 7→ NX ( A) is measurable. The induced
probability measure P on N lf is called the distribution of the point process.

When the xi ∈ X have a location component, i.e., when D is of the form R
d × L for some

mark space L , assumed to be a complete, separable metric space, and the marginal point
process of locations is well-defined, X is said to be a marked point process. If P is translation
invariant in the sense that it does not change if all marked points xi = (ai , mi ) ∈ X are
translated over some vector y ∈ R

d into (ai + y, mi ), X is stationary. If, additionally, P is not
affected by rotations of the location component, X is isotropic.

Example 16.1
Let D be a compact subset of the plane of strictly positive area |D|. A binomial point process is
defined as the union X = {X1, . . . , Xn} of a fixed number n ∈ N of independent, uniformly
distributed points X1, · · · , Xn in D. In other words, P(Xi ∈ A) = |A|/|D| for all Borel subsets
A ⊆ D. Now,

N( A) =

n
∑

i=1

1{Xi ∈ A}
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is a sum of random variables; hence, a random variable itself, and, as N( A) ≤ N(D) = n, X
takes values in Nlf.

Example 16.2
Further to the previous example, by replacing the fixed number n ∈ N by an integer-valued,
random variable following a Poisson distribution with parameter λ|D| proportional to the
area |D| of D, we obtain a homogeneous Poisson process on D. Now,

P(N( A) = k) =

∞
∑

n=k

e−λ|D| (λ|D|)n

n!

(

n

k

)(

|A|

|D|

)k (

1 −
|A|

|D|

)n−k

= e−λ|A| (λ|A|)k

k!
,

for all k ∈ N0, so that N( A) is Poisson distributed with parameter λ|A|, and, by similar
arguments, for disjoint Borel sets A, B ⊆ D, and k, l ∈ N0,

P(N( A) = k; N(B) = l) = P(N( A) = k) P(N(B) = l).

Hence, the random variables N( A) and N(B) are independent. It should be noted that the
definition of a Poisson process may be extended to the plane by tiling R

2 and defining
independent Poisson processes on each tile as before.

16.1.2 Characterization of Point Process Distributions

The distribution of a real-valued random variable may be characterized by its distribution
function, characteristic function, moment generating function, or Laplace transform. Recall
that the distribution P of a point process is that induced by the integer-valued random
variables N( A) counting the number of objects placed in bounded Borel sets A. Thus, it is
natural to characterize P by properties of the distributions of the random variables N( A).

Definition 16.2
The family of finite-dimensional distributions (fidis) of a point process X on a complete, sepa-
rable metric space (D, d) is the collection of the joint distributions of (N( A1), . . . , N( Am)), where
( A1, . . . , Am) ranges over the bounded Borel sets Ai ⊆ D, i = 1, . . . , m, and m ∈ N.

The following uniqueness theorem holds.

Theorem 16.1
The distribution of a point process X on a complete, separable metric space (D, d) is completely
specified by its finite-dimensional distributions.

In other words, if two point processes have identical fidis, they also share the same
distribution. The result follows from the observation that the family of sets

{ω ∈ Ω : NX(ω)( Ai ) ∈ Bi , i = 1, . . . , m},

where Ai ⊆ D are bounded Borel sets and Bi ⊆ R are Borel, is a semiring generating N lf.
A point processes on (D, d) is called simple if its realizations contain no points with

multiplicity ki ≥ 2, so that N({x}) ∈ {0, 1} almost surely for all x ∈ D. Surprisingly, as
shown by Rényi (1967) for the Poisson process and by Mőnch (1971) more generally, if two
simple point processes X and Y assign the same void probabilities, v( A) = P(N( A) = 0), to
all bounded Borel sets A, their distributions coincide.
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Spatial Point Process Theory 267

Theorem 16.2
The distribution of a simple point process X on a complete, separable metric space (D, d) is uniquely
determined by the void probabilities of bounded Borel sets A ⊆ D.

In the above theorem, the collection of bounded Borel sets may be replaced by a smaller
class, such as the compact sets. For details, we refer to Berg, Christensen, and Ressel
(1984), Choquet (1953), Daley and Vere-Jones (1988), Matheron (1975), McMillan (1953),
and Norberg (1989).

Example 16.3
The binomial point process introduced in Example 16.1 is simple and has void probabilities
v( A) = (1 − |A|/|D|)n, A ∈ B(D). For the homogeneous Poisson process considered in
Example 16.2, v( A) = exp [−λ|A|] .

For any point process X, one may define a simple point process Xs by ignoring the
multiplicity. It follows from Theorem 16.2 that if point processes X and Y have identical
void probabilities, the distributions of Xs and Ys must be the same. Thus, X and Y exhibit
the same interaction structure except for the multiplicity of their points.

Trivial cases apart, it is not possible to plot the void probabilities as a function of A ⊆ D.
Nevertheless, a graphical representation may often be achieved. Indeed, suppose that the
distributionP that produced a Euclidean point pattern, such as that depicted in Figure 16.1,
is invariant under translations. Then v( A) = v(Tx A) for all Tx A = {a + x : a ∈ A}, x ∈ R

d .
In particular, if A = b̄(x, r ) = {y ∈ R

d : ||y − x|| ≤ r} is a closed ball, the stationarity of
P implies that v(b̄(x, r )) is a function of r only. Based on this observation, the empty space
function is defined as

F (r ) = P(d(x, X) ≤ r ) = 1 − v(b̄(x, r )), r ≥ 0, (16.1)

that is, F is the distribution function of the distance from an arbitrary point x ∈ R
d to the

nearest point of X. Although P is not uniquely specified by the void probability it assigns
to balls, plots of the estimated empty space function do provide valuable information on
the interaction structure.

Example 16.4
Estimated empty space functions related to the Kaluzhskie Zaseki Forest data of Figure 16.2
are given in Figure 16.3. On biological grounds, it may be expected that the patterns
formed by young and established trees are qualitatively different, and this is confirmed by
Figure 16.3. Using the observed size mark as a substitute for the nonrecorded age of trees,
estimated F-functions for both types of trees are shown and compared to the empty space
function of a Poisson process with the same expected number of points (cf. Example 16.3).
For small trees, large empty spaces occur with a higher probability than under the Pois-
son model. Such a behavior is typical for clustered patterns with groups of nearby points
separated by gaps. The graph for larger trees is closer to that of its Poisson counterpart.

16.1.3 Campbell and Moment Measures

In the previous section, we saw that the distribution of a simple point process is described
fully by its void probabilities and that a graphical representation is available in the empty
space function. For point processes that may contain multiple points, the finite-dimensional
distributions of Definition 16.2 can be used to specify the distribution, and their moments
provide a useful complementary collection of summary statistics (see, e.g., Matthes et al.,
1978).
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FIGURE 16.3
Estimated empty space functions of Kaluzhskie Zaseki data (solid lines). (Left) Locations of trees with diameter
less than 15 cm, (right) those with diameter larger than 25 cm. The dashed lines are the empty space functions for
homogeneous Poisson processes with, on average, the same number of points per unit area as the data.

Definition 16.3
Let X be a point process on a complete, separable metric space (D, d). Define a set function M by
M( A) = EN( A) for all bounded Borel sets A ⊆ D.

Example 16.5
Consider the binomial point process of Example 16.1. Then,

M( A) = n P(X1 ∈ A) = n |A|/|D|

for any Borel set A ⊆ D. In particular, M(D) = n < ∞. For the homogeneous Poisson
process of Example 16.2, M( A) = λ |A|.

By standard measure theoretic arguments (see, e.g., Daley and Vere-Jones (1988) or van
Lieshout (2000)), the set function M can be extended to a Borel measure.

Theorem 16.3
If the function M introduced in Definition 16.3 is finite for all bounded Borel sets, it can be extended
uniquely to a σ -finite measure on the Borel sets of D, the (first-order) moment measure.

Let us consider a stationary point process X on the Euclidean space R
d , and denote by

Tx A = {a + x : a ∈ A} the translation of A over the vector x ∈ R
d . Then, for any Borel

set A,

M( A) = EN( A) = EN(Tx A) = M(Tx A).

Consequently, provided M is finite for bounded A, a constant 0 ≤ λ < ∞ can be found such
that M( A) = λ |A|. The scalar constant λ is called the intensity of X. An example of a sta-
tionary point process is the homogeneous Poisson process on the plane, (cf. Example 16.2).

More generally, if M is absolutely continuous with respect to Lebesgue measure, then

M( A) =

∫

A

λ(x) dx

for Borel sets A, and λ(·) is referred to as an intensity function of the point process X.
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In integral terms, Theorem 16.3 asserts that

∫

A

d M(a) = E

[

∑

x∈X

1{x ∈ A}

]

for all A ∈ B(D). Linearity and monotonicity arguments imply that

E

[

∑

x∈X

g(x)

]

=

∫

D

g(x) d M(x) (16.2)

for any measurable function g : D → R that is either nonnegative or integrable with
respect to M, provided the moment measure M exists, i.e., is finite on bounded Borel sets.
Identities of the form Equation (16.2) are usually referred to as Campbell theorems in honor
of Campbell’s (1909) paper. Intuitively, suppose one takes a measurement g(x) at each x
in some data configuration X . Then the grand total of these measurements is equal in
expectation to the spatial integral of g with respect to the moment measure of the stochastic
process that generated the data.

Example 16.6
Let us revisit the forestry data discussed in Section 16.1.1, and assume it can be seen as
a realization of a stationary marked point process on D = R

2 × R
+, observed within the

window W = [0, 75]2. Then, for bounded Borel sets A ⊆ R
2, B ⊆ R

+, and x ∈ R
2,

M(Tx A× B) = M( A× B).

If we additionally assume that the first-order moment measure of the marginal point process
of locations exists, the translation invariance implies that M can be factorized as λ ℓ × νM

where λ ≥ 0 is the intensity of the marked point process, ℓ Lebesgue measure on R
2, and

νM a probability measure on R
+, the mark distribution. By the Campbell theorem

E





∑

(a,m)∈X

m 1{a ∈ W}



 = 752 λ

∫ ∞

0

m dνM(m).

In other words, a ratio-unbiased estimator of the mean tree diameter with respect to νM is
the average observed diameter. The smoothed empirical mark distribution function νM is
depicted in Figure 16.4. Note that νM has two clear modes.
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FIGURE 16.4
Estimated mark probability density function of Kaluzhskie Zaseki Forest data.
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Moment measures may be refined by restricting attention to configurations with specified
properties.

Definition 16.4
Let X be a point process on a complete, separable metric space (D, d). Define

C( A× F ) = E [N( A) 1{X ∈ F }]

for all bounded Borel sets A ⊆ D and all F ∈ N lf.

Moment measures may not exist, but C always defines a proper measure, the Campbell
measure of Kummer and Matthes (1970).

Theorem 16.4
The function C of Definition 16.4 can be extended uniquely to a σ -finite measure on the product
σ -algebra of B(D) and N lf, the (first-order) Campbell measure.

Since C( A × Nlf) = EN( A) = M( A) for any Borel set A, it follows that C is finite if and
only if M is also finite.

Rephrased in integral terms, Theorem 16.4 states that

E

[

∑

x∈X

g(x, X)

]

=

∫

D

∫

Nlf

g(x, X ) dC(x, X ) (16.3)

for any measurable function g : D × Nlf → R, which is either nonnegative or integrable
with respect to the Campbell measure.

16.1.4 Reduced and Higher-Order Campbell Measures

Second- and higher-order moment measures are defined by considering N( A1), N( A2), . . .

jointly.

Definition 16.5
Let X be a point process on a complete, separable metric space (D, d). Define, for n ∈ N, and bounded
Borel subsets A1, . . . , An of D,

Mn( A1 × · · · × An) = E [N( A1) · · · N( An)] .

If all Ai ≡ A are equal, Mn( A × · · · × A) = M( A)n. Since the Borel rectangles form a
semiring generating the Borel product σ -algebra, provided Mn is finite, it can be extended
uniquely to a σ -finite measure on the product σ -algebra, the nth order moment measure of X.
Its integral representation states that

E

[

∑

x1,...,xn∈X

g(x1, . . . , xn)

]

=

∫

D

· · ·

∫

D

g(x1, . . . , xn) d Mn(x1, . . . , xn)

for any measurable function g : Dn → R that is either nonnegative or integrable with respect
to Mn, provided that Mn exists as a σ -finite measure.

Example 16.7
Let A and B be bounded Borel sets. The covariance of the random variables counting
the number of points in A and B can be written in terms of the second-order moment
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measure as
Cov(N( A), N(B)) = M2( A× B) − M( A) M(B).

In particular,
var(N( A)) = M2( A× A) − M( A)2.

Example 16.8
For the binomial point process of Example 16.1, as N( A1) N( A2) =

∑n
i=1 1{Xi ∈ A1 ∩ A2} +

∑n
i=1

∑

j 6=i 1{Xi ∈ A1; X j ∈ A2},

M2( A1 × A2) = n
|A1 ∩ A2|

|D|
+ n(n − 1)

|A1| |A2|

|D|2
.

Next, consider the homogeneous Poisson process of Example 16.2. As the total number of
points is Poisson distributed with mean λ |D|,

M2( A1 × A2) = E [E [N( A1) × N( A2)] | N(D)] = λ |A1 ∩ A2| + λ2 |A1| |A2|.

In the above example, M2 was computed by distinguishing between pairs of identical
and pairs of distinct points. If only the latter type are taken into consideration, we obtain
the nth order factorial moment measure µn defined by the integral representation

E

[

6=
∑

x1,...,xn∈X

g(x1, . . . , xn)

]

=

∫

D

· · ·

∫

D

g(x1, . . . , xn) dµn(x1, . . . , xn) (16.4)

for all measurable functions g : Dn → R
+ (see, e.g., Mecke (1976)). Standard measure-

theoretic arguments imply Equation (16.4) holds true for any g that is integrable with
respect to µn. The sum is over all n-tuples of distinct points. For n = 1, µ1 = M1 = M,
the first-order moment measure. We shall say that the nth order factorial moment measure
exists if µn( A) is finite for all bounded Borel sets A ⊆ D.

Example 16.9
Let A1, A2 be Borel subsets of some compact set D ⊆ R

2. Further to Example 16.8, the
homogeneous Poisson process with intensity λ has second-order factorial moment measure

µ2( A1 × A2) = λ2 |A1| |A2|.

For the binomial point process with n points,

µ2( A1 × A2) = n(n − 1) |A1| |A2|/|D|2.

If µn is absolutely continuous with respect to some n-fold product measure νn on Dn,
then Equation (16.4) can be written as

E

[

6=
∑

x1,...,xn∈X

g(x1, . . . , xn)

]

=

∫

D

· · ·

∫

D

g(x1, . . . , xn) ρn(x1, . . . , xn) dν(x1) . . . dν(xn).

The Radon–Nikodym derivativeρn ofµn is referred to as its product density, andρn(x1, . . . , xn)
dν(x1) . . . dν(xn) may be interpreted as the joint probability of a point falling in each of the
infinitesimal regions centered at x1, . . . , xn.

Example 16.10
Further to Example 16.9, the homogeneous Poisson process with intensity λ has constant
second-order product density ρ2(x1, x2) = λ2, while for the binomial point process with
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FIGURE 16.5
Estimated pair correlation functions of Kaluzhskie Zaseki Forest data (solid lines). (Left) Trees with diameter less
than 15 cm, (right) those with diameter larger than 25 cm. The dashed lines are the pair correlation functions of a
homogeneous Poisson process.

n points,
ρ2(x1, x2) ≡ n(n − 1)/|D|2.

Example 16.11
We return to the setup of Example 16.4, and make the further assumptions that the
(unmarked) point patterns Xs and Xl of small and large trees, respectively, are isotropic
and that first- and second-order product densities exist. Then ρ1 ≡ λ, the intensity, and
ρ2(x1, x2) = ρ2(||x1 − x2||) is a function only of the distance r = ||x1 − x2|| between the
points. Scaled by intensity, the estimated pair correlation functions

g(r ) = ρ2(r )/λ2

of both patterns are plotted in Figure 16.5. As g(r ) greater than 1 indicates a higher proba-
bility of finding a pair of r -close points than for a homogeneous Poisson process with the
same intensity, the left-hand panel of Figure 16.5 indicates clustering of small (young) trees.
The trees having larger diameters avoid each other up to about 2 cm. The mode around
4 cm reflects the typical interpoint distance, which also explains the cyclic behavior of the
graph. Note that this interpretation differs somewhat from our earlier interpretation of the
empty space function for these data (right-hand panel of Figure 16.3). Later chapters will
discuss in more detail the way in which different summary descriptions of point processes
can yield different insights when used as tools for data analysis.

Higher-order Campbell measures can be defined similarly (Kallenberg, 1975), for instance

C2( A1 × A2 × F ) = E [N( A1) N( A2) 1{X ∈ F }]

for bounded Borel sets Ai , i = 1, 2, and F ∈ N lf.
To conclude this survey of Campbell-type measures, let us consider the concept of re-

duction. The basic idea is to single out each point in a configuration and consider the
remaining pattern from this point’s perspective. Therefore, reduced Campbell measures
are useful tools to describe in a rigorous way the conditional distribution of a point process
given that it places mass on a certain (marked) point and, dually, its behavior at a given
location conditioned on the pattern elsewhere. A more detailed development of this idea
will be given in the next section.
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Definition 16.6
Let X be a simple point process on the complete, separable metric space (D, d). Define

C !( A× F ) =

∫

Nlf

∑

x∈X

1{x ∈ A} 1{X \{x} ∈ F } dP(X ) = E

[

∑

x∈X∩A

1{X\{x} ∈ F }

]

for all bounded Borel sets A ⊆ D and all F ∈ N lf.

As the Campbell measure of Theorem 16.4, C ! can be extended uniquely to a σ -finite
measure on the product σ -algebra of B(D) and N lf, the first-order reduced Campbell measure.
Moreover, the integral representation

E

[

∑

x∈X

g(x, X \ {x})

]

=

∫

D

∫

Nlf

g(x, X ) dC !(x, X ) (16.5)

holds for any measurable function g : D × Nlf → R that is either nonnegative or C !-
integrable. As for higher orders, Mecke (1979) (see also Hanisch (1982)) defined the nth-
order reduced Campbell measure of a simple point process X by

C !
n( A1 × · · · An × F ) = E

[

6=
∑

x1,...,xn∈X

1A1
(x1) · · · 1An

(xn) 1{X\{x1, . . . , xn} ∈ F }

]

,

or in integral terms

E

[

6=
∑

x1,...,xn∈X

g(x1, . . . , xn, X\{x1, . . . , xn})

]

=

∫

D

· · ·

∫

D

∫

Nlf

g(x1, . . . , xn, X ) dC !
n(x1, . . . , xn, X )

for any measurable function g : Dn × Nlf → R
+, cf. (16.4).

16.1.5 Palm Theory and Conditioning

Henceforth, assume the first-order moment measure M exists and is σ -finite. Fix F ∈ N lf

and note that if C( A × Nlf) = M( A) = 0, so is C( A × F ). In other words, the marginal
Campbell measure with second argument fixed at F is absolutely continuous with respect
to M, so that for all A ∈ B(D),

C( A× F ) =

∫

A

Px(F ) d M(x)

for some nonnegative Borel measurable function x 7→ Px(F ) on D defined uniquely up to
an M-null set. As the exceptional null set may depend on F , it is not immediately clear that
the Px(·) are countably additive. However, the topological structure imposed on D implies
that a version of the Radon–Nikodym derivatives Px(F ) can be found such that

• For fixed x ∈ D, Px(F ) is a probability distribution on (Nlf, N lf).

• For fixed F , Px(F ) is a Borel measurable function on D.

The probability distributions Px(·) thus defined are Palm distributions of X at x ∈ D, named
in honor of Palm (1943). The Radon–Nikodym approach discussed above is due to Ryll-
Nardzewski (1961).
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Palm distributions are especially useful in simplifying Campbell-type formulas. Indeed,
if Ex denotes expectation with respect to Px, (16.3) can be rewritten as

E

[

∑

x∈X

g(x, X)

]

=

∫

D

∫

Nlf

g(x, X ) dPx(X ) d M(x) =

∫

D

Ex [g(x, X)] d M(x)

for any measurable function g : D × Nlf → R that is either nonnegative or C-integrable.
Heuristically speaking, recall that the distribution of a simple point process is fully de-

termined by its void probabilities. Pick some small ǫ > 0 and consider

P(N( A) = 0 | N(b(x, ǫ)) > 0) ≈
C(b(x, ǫ) × {N( A) = 0})

P(N(b(x, ǫ)) > 0)
=

∫

b(x,ǫ) Py(N( A) = 0) d M(y)

P(N(b(x, ǫ)) > 0)
.

For small ǫ, the numerator is approximately equal to Px(N( A) = 0) M(b(x, ǫ)), the denom-
inator to M(b(x, ǫ)). Hence, Px(N( A) = 0) may be seen as the conditional void probability
of A given that X places mass on x.

Example 16.12
The lack of dependence between the points of a Poisson process (cf. Example 16.2) implies a
particularly simple form for its Palm distribution. Indeed, let X be a homogeneous Poisson
process with intensity λ > 0 on R

2 and writeP for its distribution. Then, a Palm distribution
of X at x ∈ R

2 is given by P ∗ δx, the convolution of P with an atom at x.
To see this, note that since both Px and P ∗δx are simple, by Theorem 16.2 it is sufficient to

prove that their void probabilities coincide. To do so, let B be a bounded Borel set and write
vx(B) for the probability under P ∗ δx that there are no points in B, v(B) for P(N(B) = 0).
For any bounded Borel set A ⊆ R

2, by definition

C( A× {N(B) = 0}) = λ

∫

A

Px(N(B) = 0) dx.

On the other hand,

C( A× {N(B) = 0}) = C( A\B × {N(B) = 0}) = λ |A\B| v(B) = λ

∫

A\B

v(B) dx

= λ

∫

A

vx(B) dx,

using the fact that for a Poisson process the random variables N( A\ B) and N(B) are
independent. Since A was chosen arbitrarily, Px(N(B) = 0) = vx(B) for almost all x.

Example 16.13
For a simple, stationary marked point process on D = R

2 × R
+, as considered in Exam-

ple 16.6, for all Borel subsets B of R
+ and y ∈ R

2, let F
y
B = {X : (y, m) ∈ X for some m ∈ B}

be the event of finding a point at y with mark in B. Because of the stationarity, a version
of Palm distributions can be found that are translates of a single probability distribution,
P(y,m)({TyX : X ∈ F }) = P(0,m)(F ) (almost everywhere). An application of the Campbell

theorem for g((y, m), X ) = 1{y ∈ A; X ∈ F
y
B} yields

λ

∫

A

∫ ∞

0

P(y,m)

(

F
y
B

)

dνM(m) dy = λ

∫

A

∫ ∞

0

P(0,m)

(

F 0
B

)

dνM(m) dy = λ νM(B) |A|

for all bounded Borel sets A. Thus, the mark distribution νM may be interpreted as the
probability distribution of the mark at an arbitrarily chosen point.

© 2010 by Taylor and Francis Group, LLC



Spatial Point Process Theory 275

Higher-order and reduced Palm distributions can be defined in a straightforward fashion.
For example, suppose that the second-order moment measure M2 exists. Then, Jagers (1973)
defined second-order Palm distributions Px1,x2

(F ) that satisfy

C2( A1 × A2 × F ) =

∫

A1

∫

A2

Px1,x2
(F ) d M2(x1, x2)

for all Borel sets Ai , i = 1, 2, and F ∈ N lf. To obtain a reduced Palm distribution, replace Mn

by µn and Cn by C !
n (Mecke, 1979; Hanisch, 1982). The equivalent integral representations

hold as well. In particular, Equation (16.5) can be rephrased as

E

[

∑

x∈X

g(x, X \ {x})

]

=

∫

D

∫

Nlf

g(x, X ) dP !
x(X ) d M(x) =

∫

D

E!
x [g(x, X)] d M(x),

where P !
x is a reduced Palm distribution at x ∈ D.

Example 16.14
From Example 16.12, it follows immediately that a reduced Palm distribution of a homoge-
neous planar Poisson process with intensity λ is its distribution P . This fundamental prop-
erty is a consequence of the Slivnyak–Mecke theorem stating that the homogeneous Poisson
process is characterized by reduced Palm distributions that are translates of a single prob-
ability distribution P !

x({TxX : X ∈ F }) = P !
0(F ) for almost all x and P !

0 = P (Jagers, 1973;
Kerstan and Matthes, 1964; Mecke, 1967; Slivnyak, 1962). Hence, the reduced Campbell
measure

C !( A× F ) = λ

∫

A

P
!
x(F ) dx = λP(F ) |A|,

where A ⊆ R
2 is a bounded Borel set and F ∈ N lf is a product measure.

The analog of the empty space function (16.1) in a Palm context is the nearest-neighbor
distance distribution function G. Let X be a simple, stationary point process with locations in
R

d . Then, for any r ≥ 0,
G(r ) = P

!
x(d(x, X) ≤ r )

is the probability that X places at least one point within distance r of some arbitrarily chosen
x ∈ R

d . As translation invariance is inherited by Palm distributions, G(r ) is well defined
and does not depend on the choice of x.

Example 16.15
Estimated nearest-neighbor distance distribution functions for young and established trees
in the Kaluzhskie Zaseki Forest data are given in Figure 16.6 and are compared to the G-
function of a Poisson process with the same expected number of points (cf. Example 16.12).
For small (young) trees, small distances to the nearest neighbor occur with a higher proba-
bility than under the Poisson model. Such a behavior is typical for clustered patterns with
groups of nearby points separated by gaps. In contrast to the empty space distribution, the
G-graph for larger trees differs from its Poisson counterpart in that up until about r = 4 cm,
G(r ) is smaller than under the Poisson model, indicating repulsion at such range; beyond
this range, the nearest-neighbor distance distribution is larger than what would be expected
if there were no spatial interaction with the steep increase beyond r = 4 cm reflecting the
preferred interpoint separation.

The ratio

J (r ) =
1 − G(r )

1 − F (r )
,
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FIGURE 16.6
Estimated nearest-neighbor distance distribution functions of Kaluzhskie Zaseki Forest data (solid lines). (Left)
Locations of trees with diameter less than 15 cm, (right) those with diameter larger than 25 cm. The dashed lines
are the nearest-neighbor distance distribution functions for homogeneous Poisson processes with, on average, the
same number of points-per-unit area as the data.

defined for all r ≥ 0 such that F (r ) < 1, compares the void probabilities of closed balls
b̄(x, r ) under P !

x and P . The advantage of considering the ratio is that no reference to the
intensity of some Poisson process needs to be made. Indeed, values less than 1 indicate that
the size of empty spaces tends to be larger than the distance between nearest-neighbor pairs
(clustering), whereas values exceeding 1 suggest a more regular pattern (van Lieshout and
Baddeley, 1996). The left and center panels of Figure 16.7 confirm the interaction structure
implied by the nearest-neighbor distance distribution function. By way of illustration, the
J-function of all locations regardless of the mark is shown as well. It indicates clustering at
the smallest scales, has a repulsion peak around 2 to 3 cm, then decreases.

Functions, such as F, g, G, or J, provide valuable information and their empirical coun-
terparts are useful tools for data analysis, as discussed in later chapters. Nevertheless, no
such low-dimensional function fully characterizes the distribution of the process and it is
wise to plot several to grasp different aspects of the underlying distribution.

As we have seen, Palm distributions can be interpreted as conditional distributions given
that there is mass at some fixed point. We now turn to describing the dual notion of the
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FIGURE 16.7
Estimated J-functions of Kaluzhskie Zaseki Forest data (solid lines). (Left) Locations of trees with diameter less
than 15 cm, (center) those with diameter larger than 25 cm, and (right) all tree locations. The dashed lines are the
J-functions of a homogeneous Poisson process.
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probability mass of some fixed point, conditional on knowing the full realization of the
point process elsewhere.

Let X be a simple point process on a complete, separable metric space for which the
first-order moment measure M(·) exists as a σ -finite measure. Furthermore, assume that
for any fixed bounded Borel set A, the marginal reduced Campbell measure C !( A × ·) is
absolutely continuous with respect to the distribution P of X. Then

C !( A× F ) =

∫

A

P !
x(F ) d M(x) =

∫

F

Λ( A; X ) dP(X ) (16.6)

for some N lf-measurable function Λ( A; ·), specified uniquely up to a P-null set. If Λ(·; X )
admits a Radon–Nikodym derivative λ(·; X ) with respect to some Borel measure ν on D,

C !( A× F ) =

∫

F

∫

A

λ(x; X ) dν(x) dP(X ) =

∫

A

E [1F (X) λ(x; X)] dν(x).

Replacing the indicator function 1A(x) 1F (X ) by arbitrary nonnegative functions, we obtain
the following definition.

Definition 16.7
Let X be a simple point process on a complete, separable metric space (D, d) equipped with Borel
measure ν. If for any measurable function g : D × Nlf → R

+,

E

[

∑

x∈X

g(x, X \ {x})

]

=

∫

D

E [g(x, X) λ(x; X)] dν(x)

for some measurable function λ : D × Nlf → R
+, then X is said to have Papangelou conditional

intensity λ (Papangelou, 1974).

From a heuristic point of view, by Equation (16.6), d P !
x(X ) d M(x) = λ(x; X ) dP(X ) dν(x);

hence, λ(x; X ) dν(x) can be interpreted as the infinitesimal probability of finding a point of
X at the infinitesimal region centered at x conditional on the event that X and X agree on
the complement of this region. As we shall see in the next section, conditional intensities
are especially useful for finite point processes.

Example 16.16
Further to Example 16.14, note that for a homogeneous planar Poisson process with inten-
sity λ,

C !( A× F ) = λP(F ) |A| =

∫

F
[λ |A|] dP(X )

so that Λ( A; X ) ≡ λ |A| is a Papangelou kernel. This kernel has density λ with respect
to Lebesgue measure and does not depend on either x or X , as indeed one would have
anticipated because of the strong independence properties of the Poisson process.

Example 16.17
Let X be a stationary, simple point process on R

d with intensity λ > 0. Suppose X admits a
conditional intensity and let g: Nlf → R

+ be a measurable function. Then,

λ

∫

A

E !
x g(X) dx =

∫

A

E [g(X) λ(x; X)] dx

for all Borel sets A. In fact the Georgii–Nguyen–Zessin formula (Georgii, 1976; Nguyen and
Zessin, 1979) states that

λ E !
x g(X) = E [g(X) λ(x; X)] (16.7)
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for almost all x ∈ R
d . Thus, expectations with respect to P may be translated into reduced

Palm expectations and vice versa.

16.1.6 Finite Point Processes

Most point patterns encountered in practice are observed in a bounded region. Sometimes
this region is dictated by the application; more often, the spatial process of interest extends
over a space that is too large to be mapped exhaustively and data are recorded in a smaller
“window” chosen for convenience. In any case, the resulting map contains a finite number
of points.

The distribution of point processes whose realizations are almost surely finite can be
described as follows (Daley and Vere-Jones, 1988; Reiss, 1993). For convenience, suppose
that (D, d) is equipped with a Borel measure ν and assume 0 < ν(D) < ∞. Then, it suffices
to specify

• A discrete probability distribution ( pn)n∈N0
for the number of points

• A family of symmetric probability densities πn(x1, . . . , xn)n∈N with respect to the
n-fold product of ν for the points themselves (i.e., for point locations, and marks if
applicable)

The symmetry requirement for the πn is needed to make sure that the patterns generated
by the πn are permutation invariant, in other words, do not depend on the order in which
their points are listed.

It should be noted that for many point processes, pn cannot be expressed in closed form.
If it can, the model specification is algorithmic, so that realizations are easily obtained. Note
that if ν is diffuse, the point process is simple.

Janossy densities (Janossy, 1950) are defined in terms of ( pn, πn)n∈N0
, as

jn(x1, . . . , xn) = n! pn πn(x1, . . . , xn), n ∈ N0. (16.8)

In an infinitesimal sense, jn(x1, . . . , xn) dν(x1) . . . dν(xn) is the probability of finding exactly
n points, one at each of infinitesimal regions centered at x1, . . . , xn. For n = 0, Equation (16.8)
is conventionally read as j0(∅) = p0. As

∫

D · · ·
∫

D jn(x1, . . . , xn) dν(x1) . . . dν(xn) = n! pn, one
may retrieve pn and, hence, πn from jn.

Example 16.18
For the binomial point process introduced in Example 16.1, pm = 1{m = n} for some fixed
n ∈ N. As the points are uniformly and independently scattered over some compact set D,
πn ≡ |D|−n with respect to Lebesgue measure. For m 6= n, πn may be defined arbitrarily.

The homogeneous Poisson process of Example 16.2 is described by pn = exp [−λ |D|]
(λ |D|)n/n! and, for each n ∈ N0, πn ≡ |D|−n with respect to the n-fold product of Lebesgue
measures. Consequently, jn = λn exp [−λ |D|] .

Although in most applications it is not realistic to assume that points are scattered ran-
domly, Poisson processes are supremely useful as benchmarks. Indeed, one may construct
a wide range of point process models by specifying their probability density (Radon–
Nikodym derivative) with respect to a Poisson process with finite, diffuse intensity mea-
sure ν. However, not all finite point processes are absolutely continuous with respect to a
given Poisson model; counterexamples on the plane equipped with Lebesgue measure are
those that place points deterministically or in equidistant pairs.
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Let X be a point process defined by its probability density f . The probability of the event
{N(D) = n} is

pn =
e−ν(D)

n!

∫

D

· · ·

∫

D

f (x1, . . . , xn) dν(x1) . . . dν(xn)

for each n ∈ N, with p0 = e−ν(D) f (∅) equal to the probability of the empty configuration ∅.
If pn > 0, conditionally on X containing exactly n points, their joint probability distribution
is proportional to f (x1, . . . , xn). It follows that jn(x1, . . . , xn) = e−ν(D) f (x1, . . . , xn) is also
proportional to f .

Example 16.19
Return to the setup of Example 16.2, and let ν be Lebesgue measure restricted to a compact
set D ⊆ R

2. A comparison of the Janossy densities of the homogeneous Poisson process X
with intensity λ to those of a unit intensity Poisson process yields that X must have density

f (x1, . . . , xn) = exp [(1 − λ)|D|] λn, n ∈ N0,

with respect to the distribution of the unit intensity Poisson process (see also Example 16.18).
It is not hard to verify that f indeed defines the distribution of X.

The binomial point process has density

f (x1, . . . , xn) = n! e |D| |D|−n

for configurations consisting of n points, and f ≡ 0 on {N(D) 6= n} with respect to the
distribution of a unit intensity Poisson process on D.

For finite point processes that are defined in terms of a density with respect to some
Poisson process, conditional intensities exist and are easy to compute (Ripley and Kelly,
1977).

Theorem 16.5
Let X be a finite point process on a complete, separable metric space (D, d) with probability density
f with respect to the distribution of a Poisson process on D with finite, diffuse intensity measure ν

and assume that f (X ) > 0 implies f (X ′) > 0 for all X ′ ⊆ X . Then, X has Papangelou conditional
intensity

λ(x; X ) =
f (X ∪ {x})

f (X )
(16.9)

for x ∈ D\X and configurations X such that f (X ) > 0.

For processes that are absolutely continuous, the conditional intensity provides a fourth
way of defining the distribution. Indeed, by Equation (16.9),

f ({x1, . . . , xn}) ∝

n
∏

i=1

λ(xi ; {x1, . . . , xi−1})

regardless of the order in which the points are labeled.
In summary, finite point processes are usually easier to deal with than most infinite ones.

Their distribution is known once we have specified either ( pn, πn)n∈N0
or jn, n ∈ N0. If

the point process is absolutely continuous with respect to a Poisson process, alternative
modeling strategies are to specify f or λ(·; ·).
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16.1.7 Gibbs Measures by Local Specification

Infinite point processes are not easily specified by a density with respect to a (homoge-
neous) Poisson process. Indeed, even homogeneous Poisson processes on R

d with different
intensities are not absolutely continuous with respect to each other (see, e.g., van Lieshout
(2000)). Nevertheless, one may try to define a point process X by specification of a family
of conditional densities for the finite restrictions of X to bounded Borel sets.

Again, assume that (D, d) is a complete, separable metric space equipped with a diffuse,
locally finite Borel measure ν. Define a family of probability densities fB(X ∩ B | X ∩ Bc),
B a bounded Borel set, with respect to the law of a Poisson process with intensity measure
ν restricted to B. Here X ranges through Nlf. Then, for F ∈ N lf,

∞
∑

n=0

e−ν(B)

n!

∫

B

· · ·

∫

B

1F ({x1, . . . , xn} ∪ (X ∩ Bc)) fB(x1, . . . , xn | X ∩ Bc) dν(x1) · · · dν(xn)

can be interpreted as the probability that X falls in F conditional on the event {X ∩ Bc =

X ∩ Bc}.
It is not at all obvious that the family fB(· | ·) defines a point process distribution P . A

necessary condition is that the Dobrushin–Landford–Ruelle equations

P(F ) =

∫ ∞
∑

n=0

e−ν(B)

n!

∫

B

· · ·

∫

B

1F ({x1, . . . , xn} ∪ (X ∩ Bc))

fB(x1, . . . , xn | X ∩ Bc) dν(x1) · · · dν(xn) dP(X ) (16.10)

are satisfied for all F ∈ N lf and all bounded Borel sets B ⊆ R
d , in which case P is said to

be a Gibbs point process with local specification fB(· | ·).
An extensive overview of conditions for the existence of a solution to Equation (16.10)

was given in Preston (1976), typically phrased in terms of bounds on the log conditional
densities or intensities, and restrictions on the points in Bc that may affect fB . For later
developments, see, for example, Georgii and Häggström (1996) or Glőtzl (1980). Note that
even if there is a solution, it may not be unique, a phenomenon known as “phase transition”
(see Preston (1976)).

Example 16.20
Let ν be Lebesgue measure on R

2 and consider the area interaction process defined by

fB(X ∩ B | ∅) = αB(∅) βn(X ) exp [−β |Ur (X )|]

for bounded Borel sets B in the plane. Here, the parameter β is assumed to be strictly
positive, Ur (X ) = ∪xi ∈X b̄(xi , r ) is the union of closed balls around each of the points in X ,
and αB(∅) is the normalizing constant that makes fB(· | ∅) a probability density.

Note that a ball of radius r intersects B only if its center is at most r away from the
boundary of B or, in other words, falls in B⊕r = {b + c : b ∈ B; c ∈ b̄(0, r )}. Hence, we may
define, for any configuration X and bounded Borel set B ⊆ R

2,

fB(X ∩ B | X ∩ Bc) = αB(X ∩ Bc) βn(X ) exp [−β |Ur (X ) ∩ B⊕r |] ,

where again αB(X ∩ Bc) is the normalizing constant. It can be shown that there exists a sta-
tionary solution to the Dobrushin–Landford–Ruelle equations (Baddeley and van Lieshout,
1995). Moreover, it is known that multiple solutions exist when β is large, whereas the so-
lution is unique for β small (Ruelle, 1971; see also Chayes, Chayes, and Kotecky 1995;
Dereudre, 2008; and Georgii and Häggström, 1996). It is plausible that the occurrence of a
phase transition is monotone in β, but to the best of our knowledge no rigorous proof exists
to date.
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carum Hungarica, 6:81–90, 1971.
J. Neyman. On a new class of “contagious” distributions applicable in entomology and bacteriology.

Annals of Mathematical Statistics, 10:35–57, 1939.
X.X. Nguyen and H. Zessin. Integral and differential characterization of the Gibbs process. Mathema-

tische Nachrichten, 88:105–115, 1979.
T. Norberg. Existence theorems for measures on continuous posets, with applications to random set

theory. Mathematica Scandinavica, 64:15–51, 1989.
C. Palm. Intensita̋tsschwankungen im Ferngesprechverkehr (in German). Ericsson Techniks, 44:1–189,

1943.

© 2010 by Taylor and Francis Group, LLC



282 Handbook of Spatial Statistics

F. Papangelou. The conditional intensity of general point processes and an application to line pro-
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17.1 Model Construction

This chapter describes various classes of parametric point process models that are useful
for scientific work. In any particular application, there will generally be an underlying
physical mechanism that generates the point events that are observed, and which may
be fully or partially understood. In building a model for these events, the modeler often
seeks to represent or reflect that physical process, albeit in a highly simplified way. Thus,
for example, if the point events are the locations of seedling trees, it will be natural to
build a model that takes into account the positions of parent trees, the clustering of the
seedlings around these, and perhaps also the prevailing wind direction, even if the exact
process of seed generation and dispersal is not represented. Such a model is often termed
“mechanistic,” and has interpretable parameters that relate to physical phenomena. In
contrast, “descriptive” models aim to represent the statistical properties of the data and
their dependence on explanatory variables without necessarily worrying about the physical
mechanisms involved. For example, a model that involves inhibition between nearby events
can be used to model the positions of ants’ nests (Harkness and Isham, 1983; see also Chapter
19, Section 19.4.2 of this volume for further discussion). The inhibition reflects competition
for resources, but is not modeled directly.

It will often be simplest to construct mechanistic models of complex phenomena in terms
of simpler point process models whose properties are well understood, and which are used
as “building blocks.” The definitions of these simple models may reflect either particular
generic mechanisms for generating events (as in the hypothetical seedling example above),
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