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ABSTRACT 

Understanding and predicting a species' distribution across a landscape is of central importance in 

ecology, biogeography, and conservation biology. However, it presents daunting challenges when 

populations are highly dynamic (i.e. increasing or decreasing their ranges), particularly for small 

populations where information about ecology and life history traits is lacking. Currently, many modelling 

approaches fail to distinguish whether a site is unoccupied because the available habitat is unsuitable or 

because a species expanding its range has not arrived at the site yet. As a result, habitat that is indeed 

suitable may appear unsuitable. To overcome some of these limitations, we use a statistical modelling 

approach that applies spatio-temporal log-Gaussian Cox processes. These model the spatial distribution of 

the species across available habitat and how this distribution changes over time, relative to covariates. In 

addition, the model explicitly accounts for spatio-temporal dynamics that are unaccounted for by 

covariates through a spatio-temporal stochastic process.  We illustrate the approach by predicting the 

distribution of a recently established population of Eurasian cranes (Grus grus) in England and estimate 

the effect of a reintroduction in the range expansion of the population. Our models show that wetland 

extent and perimeter-to-area ratio have a positive and negative effect, respectively, in crane colonisation 

probability. Moreover, we find that cranes are more likely to colonise areas near already occupied 

wetlands and that the colonisation process is progressing at a low rate. Finally, the reintroduction of 

cranes in SW England can be considered a human-assisted long-distance dispersal event that has 

increased the dispersal potential of the species along a longitudinal axis in S England. Spatio-temporal 

log-Gaussian Cox process models offer an excellent opportunity for the study of species where 

information on life history traits is lacking, since these are represented through the spatio-temporal 

dynamics reflected in the model.  

Keywords: Species distribution models, point process models, spatio-temporal log-Gaussian Cox 

process, latent field, dispersal, colonisation, reintroduction.  
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INTRODUCTION 

Understanding and predicting a species’ distribution across a landscape is of central importance in 

ecology, biogeography, and conservation biology (Elith and Leathwick 2009). The distribution of species 

is an outcome of dynamic processes, as population ranges change in response to both extrinsic (i.e. 

environmental conditions) and intrinsic (i.e. feedback processes within the populations) factors. Climate 

change, habitat loss, human disturbance or the introduction of non-native species are well-known causes 

of shifts and reductions in population distribution ranges (Mooney and Cleland 2001, Lenoir et al. 2008, 

Moritz et al. 2008, Mantyka‐ pringle et al. 2012, Haddad et al. 2015). Likewise, efforts to restore original 

habitats, enhance natural resources and reduce human threats have resulted in the range expansion of 

several species of vertebrates (Deinet et al. 2013, Tauler et al. 2015, Sun et al. 2016). Nevertheless, the 

expansion of these populations is strongly influenced by intrinsic factors; life history traits, such as 

intrinsic growth rate or dispersal ability, play a major role in shaping species occurrence (Hastings et al. 

2005). Predicting the distribution of declining or increasing populations across space and time is 

extremely challenging (Elith and Leathwick 2009); especially, for small populations where data are 

usually scarce and potentially missing.  

The most common approach to estimating the distributions of species is to use phenomenological species 

distribution models (SDMs) that correlate observations of species occurrences with environmental 

variables. Many phenomenological SDMs rely on the implicit assumption that species are spread 

throughout all the suitable environmental space (Guisan and Thuiller 2005, Dormann et al. 2012). 

However, when species are still expanding their range, as for example in the context of a recolonisation, 

this assumption is unrealistic. In such a scenario, favourable habitat yet unoccupied might be available 

just beyond the range of the species. Standard models draw conclusions based on how frequently species 

have been observed in specific environmental conditions. However, these cannot distinguish between 

habitat that has rarely been visited as it is unsuitable and habitat that has rarely been visited as it is outside 

a species’ current range. This leads to wrong conclusions as to a species’ habitat preferences and can 

make predictions unreliable.  

To overcome some of these limitations several approaches have been developed to estimate species 

distribution. For example, generalized functional responses account for the availability of all 

environmental units (Matthiopoulos et al. 2011), while hierarchical models can account for imperfect 
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detection of the species’ occurrences (Mang et al. 2017) and allow predicting species distribution in new 

areas. In addition, some recent models combine phenomenological and mechanistic approaches, which 

explicitly capture population dynamics (Gallien et al. 2010). In some cases to parameterize the 

mechanistic component of these models a detailed understanding of either key life history traits 

(including fecundity, mortality, dispersal ability), carrying capacity or density-dependence processes is 

required (Gallien et al. 2010, Fitzpatrick et al. 2012, Zurell et al. 2012, Sun et al. 2016). On the other 

hand, some methods have been able to link habitat suitability with population dynamics using 

georeferenced species counts (or presence‐ only data) (Matthiopoulos et al. 2015). 

In this study, we propose an alternative approach which models the dynamics of the species distribution 

through time conditional on the distribution of potentially suitable habitat in space. Our approach is based 

on a marked spatio-temporal point process model. The relevance of spatial and spatio-temporal point 

process models in ecological contexts is becoming increasingly recognised. For example, Law et al. 2009, 

Illian et al. 2013, Brown et al. 2016 determine underlying processes that support species coexistence in 

plant communities and Yuan et al. 2017 model distance sampling data as a thinned log-Gaussian Cox 

process (LGCP).  

We further develop the use of point process models in ecological contexts by considering a marked 

spatio-temporal point process model. This allows us to model the distribution of species in space and time 

conditional on both potential and suitable habitat. These dynamics are reflected by stochastic spatio-

temporal terms in the model that i) represent the underlying processes governing habitat location and ii) 

conditional on potential habitat represent the spatial processes governing  species distribution. 

A marked spatio-temporal point process 

More specifically, spatio-temporal point processes model the pattern formed by the x- and y-locations of 

any objects (e.g. individuals, cells, potentially suitable habitat) or events (e.g. earthquakes) in space and 

time. In addition to the locations of the objects represented by the points, qualitative or quantitative 

information on the objects may be available (e.g. health status of individuals, size of the habitat or 

whether it is occupied or not, magnitude of an earthquake). These additional variables are commonly 

referred to as marks. To improve the understanding of spatio-temporal dynamics these marks can be 

considered alongside the pattern and jointly fitted as part of a complex marked point process model (Illian 
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et al. 2012b, Illian et al. 2013, Jones‐ Todd et al. 2018).  In ecological studies these have been used to 

model the spatial distribution of above ground biomass (Ledo et al. 2016), to assess the processes that 

regulate spatial locations of muskoxen (Ovibos moschatus) herds in Greenland (Illian et al. 2012a) and to 

estimate factors influencing the frequency of koala (Phascolarctos cinereus) visits to eucalyptus trees 

(Illian et al. 2012b).  Typically marks are not the main focus in a marked point process model and are 

interpreted as additional data to inform the spatial structure of the pattern. However, in our study they are 

the main focus. The marks here relate to the presence (or absence) of cranes within a suitable habitat (i.e. 

wetland). The spatial pattern of wetlands is assumed to be a realisation of a log-Gaussian Cox process, 

and conditional on this we infer the spatial distribution of crane presence. 

In other words, we jointly fit a model to i) the spatial pattern formed by the locations of wetlands in 

England and ii) the associated mark information on the presence or absence of cranes in each of these 

wetlands over time. The two components in the model share a common stochastic element, a spatio-

temporal Gaussian random field that reflects spatio-temporal dynamics in the system. Clearly, in an 

ecological study, modelling the location of suitable habitat as such is not of as much interest in itself as is 

the spatial distribution of the target species. However, modelling the spatial pattern formed by the 

locations of suitable habitat alongside the marks accounts for the spatial autocorrelation in the variable of 

interest, and most importantly so, allows for prediction in time, given the spatial structure - and hence 

availability - of suitable habitat in space.  

The main objective of this study is to illustrate the opportunities provided by joint spatio-temporal log-

Gaussian Cox process (STLGCP) models to study and predict population range expansion for species 

where knowledge about key life history traits, such as rates and patterns of dispersal, is limited. For 

illustration, we use data on the recolonisation process of Eurasian cranes (Grus grus, cranes hereafter) in 

England. Here, we try to (i) determine the environmental and anthropogenic variables affecting crane 

breeding distribution; (ii) establish the effect of the colonisation dynamics in the species distribution, 

using the spatial autocorrelation structure (latent field) as a proxy; (iii) assess how the colonisation 

dynamics might change over time, through the temporal variation of the shape of the spatial 

autocorrelation structure; (iv) understand the effect of the reintroduction on the species range expansion; 

and (v) identify the most suitable wetlands for cranes and the wetlands more likely to be colonised in the 

near future. To fit the complex spatio-temporal model, we use a recently developed statistical model 
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fitting method, integrated nested Laplace approximation (INLA), designed to provide a fast and accurate 

approach to fitting complex spatio-temporal models. 

METHODS 

Study area and species data 

Historically, cranes were resident birds in the UK, with presence all year around, but they were extirpated 

in the 16th century after hunting completely depleted the population (Gurney 1921, Stanbury 2011). 

After they had disappeared, cranes only visited the UK as vagrants (Stanbury 2011). In 1979, more than 

400 years after the local extirpation of the breeding population a pair established in a wetland area in the 

Norfolk Broads, eastern England (Stanbury 2011). Over the following years the population grew slowly, 

to 13-14 breeding pairs in 2010 (Stanbury 2011). The current distribution in the UK comprises areas in 

the east of the UK, in Norfolk, Cambridgeshire, Oxfordshire, Yorkshire, and Aberdeenshire (Stanbury 

2011). To boost the species population in the UK, between 2010 and 2014, 90 juvenile birds were 

released in the Somerset Levels (51° 2′ N, 2° 55′ W; 56,650 ha), a wetland area situated in SW England, 

ca. 250 km away from the naturally established population (Soriano-Redondo et al. 2016). 

Cranes use a wide variety of wetland habitats for breeding (BirdLife-International 2017). For this reason, 

we aim to determine the wetland features influencing the species colonisation in England. To do so, we 

mapped the wetlands across England combining information from two sources: the UK Land Cover Map 

2007 (Morton et al. 2011) and the Wetland Vision map of current wetlands (Hume 2008). We overlaid 

both maps to define the wetland areas because the UK Land Cover Map 2007 has a similar resolution 

across the country, while the Wetland Vision map focuses on major wetland areas. We limited our study 

to England because the Wetland Vision map of current wetlands does not cover Scotland and Wales 

(Hume 2008). We only considered wetland areas over 5 ha since the highest nesting densities recorded for 

the species are around 8 ha/pair (Johnsgard 1983). In addition, since in the UK cranes have been 

exclusively nesting in lowland wetlands we excluded wetlands situated in the moorland areas (Stanbury 

and Sills 2012) based on information from Natural England data products 

(http://www.natureonthemap.naturalengland.org.uk).  

For each wetland we calculated four different metrics that could affect habitat suitability: (i) wetland 

extent, (ii) perimeter-to-area ratio, (iii) proportion of wetland in the surrounding landscape (10km 
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terrestrial buffer around the wetland), (iv) proportion of surrounding landscape (10km terrestrial buffer) 

that is urbanized, using urban and suburban areas in England mapped in the UK Land Cover Map 2007. 

We scaled the four metrics by subtracting the mean and dividing the resulting value by the standard 

deviation. To model the temporal dynamics of cranes we used an auto-regressive process of order one, 

AR(1), since our data indicate that a crane breeding location is highly dependent on the breeding location 

of the previous year. 

To determine whether a wetland had been colonised by cranes, we recorded crane nesting locations (from 

2000 to 2015) using a range of sources across England: landowners, site-managers, the Rare Breeding 

Birds Panel (http://www.rbbp.org.uk/), and the Scarce Migrant Reports in the journal British Birds. We 

considered that a wetland was occupied by breeding cranes when (i) an incubating bird or a chick was 

seen, (ii) there was post-breeding evidence of eggs being laid or young being present, (iii) a crane family 

was seen post-fledging or (iv) adults were acting in a manner that strongly suggested the presence of a 

nest or young. From 2013 onwards (the year in which released cranes first bred) we also recorded the 

nesting locations of the reintroduced birds. In the few cases where there was uncertainty about the exact 

location of the nesting site, we assigned it to the closest wetland area. Imperfect detection is unlikely to 

have had an impact because cranes are very recognisable birds and it is improbable that any nesting 

location was missed. In addition, we used cranes presence/absence as the mark which is a more 

conservative approach than using the number of pairs in the wetland, which can be subject to bigger 

errors.  

Marked log-Gaussian Cox process 

As mentioned above, to estimate the drivers of crane distribution in England and predict crane occurrence 

over time, we used a spatio-temporal point process model, specifically a marked STLGCP to jointly 

model the wetland locations as a point pattern and the presence of cranes as a mark. A STLGCP is a 

mathematically tractable type of Cox process (Cox and Isham 1980) where the log-intensity of the 

process is a spatial Gaussian random field with some mean, variance, and correlation function (Møller et 

al. 1998). In our model we use the Matérn covariance function to describe the spatial-autocorrelation 

between points. Given a realization of the Gaussian random field, in year t the STLGCP has a Poisson 

number of points with mean intensity       . This construction implies that given the intensity function, 
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the objects represented by the points, are scattered independently (Rathbun 1996; Møller et al. 1998). 

Specifically, the intensity        we use here is given by, 

          (         ) 

Here    is an intercept term that we set to zero. G(.) is a Gaussian random field, accounting for spatial 

structures in the point pattern and the exponential ensures that the intensity is always positive. This 

intensity, in the context of the application presented here represents the density of wetlands across the 

UK. Understanding the spatial distribution of wetlands is in itself not of interest here. What is of interest, 

however, is the spatial distribution of crane breeding pairs given the spatial distribution of the wetlands. 

As mentioned above we treat the information whether a breeding pair can be found in a particular wetland 

or not as a mark and model it alongside the spatial pattern, rather than in isolation.  

The joint modelling framework of locations of wetlands and the presence of cranes (marks) utilizes 

multiple latent Gaussian fields and multiple likelihoods to represent the spatial processes inherent in the 

data through space and time. In addition, each wetland has an associated       , which is assumed to 

follow a probability distribution and changes in space and over time. In the application discussed herein, 

this mark is a binary variable indicating the presence or absence of crane breeding pairs. This mark is 

assumed to follow a Bernoulli distribution with the spatio-temporal probability of crane presence 

conditional on the locations of wetlands being given by        (i.e.        Bernoulli(      ). Hence, 

in addition to the intensity we also model the marks. 

                  ∑  

 

   

                         

Here    is an intercept term that we set to zero and         refers to the value of the qth covariate at 

location s at time t. Both        and        are zero-mean spatio-temporal Gaussian random fields, 

which are approximated by an SPDE model in space that follows an AR(1) process over time (2000-

2015) with dependence parameter   (Lindgren et al. 2011, Cameletti et al. 2013) The latent field        is 

assumed to reflect both the log spatio-temporal intensity of the LGCP describing the location of wetlands 

as well at their availability to the crane population as they are expanding their range through time. The 

strength and direction of the interaction between the process governing the probability of observing a 
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breeding pair and that governing the spatial distribution of wetlands is reflected in the parameter  . For 

example a positive   would indicate that in areas of higher wetland density the probability of observing a 

pair of breeding cranes is greater. The random field        is the spatially varying process referring to the 

probability of presence of a breeding pair of cranes, which is conditionally independent of wetland 

density. In combination with the intercept term,   , which is constant in space, it reflects those processes 

that are not captured by environmental covariates contained in the model. We also use the four scaled 

environmental variables mentioned above, as covariates          for the model of the mark. We assess 

their importance in inferring the spatio-temporal process describing the probability of observing a 

breeding pair conditional on wetland location through estimating the respective regression coefficients    

(further information in Appendix 1).  

As mentioned, this joint model is fitted using a computationally efficient Bayesian model fitting 

procedure, INLA, along with the SPDE approximation to the shared latent spatio-temporal process. The 

section below briefly summarises how these approaches are used in the application discussed in this 

article (Rue et al. 2009, Lindgren et al. 2011). In addition, we provide an online tutorial and a simulated 

dataset to illustrate fitting a marked STLGCP as discussed above 

(https://github.com/cmjt/examples/blob/master/species_distribution.md). 

Fitting latent Gaussian models using the INLA-SPDE approach 

The INLA approach is designed to fit complex spatio-temporal models (formally the class of latent 

Gaussian models) in a computationally efficient way. The joint model structure we use here that contains 

a Gaussian random field in space and an AR(1) process in time is a case where we strongly benefit from 

the computational efficiency of INLA. In addition we use an SPDE as an approximation to a Gaussian 

random field as introduced by Lindgren et al. 2011. Here, weighted sums of basis functions are used to 

approximate the spatial random functions arising from the solution to the SPDE. Thus, the continuous 

interpretation of space is preserved, whilst benefiting from the computational advantages of the 

approximation and the INLA approach. 

Model implementation 
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The model was fitted using the R-library R-INLA, which has functionality for applying the SPDE 

approach (Rue et al. 2009; Lindgren et al. 2011). In practice, a Delaunay triangulation (called a “mesh”) 

is constructed on the spatial domain. This mesh is the structure on which the representation of the field is 

based (Fig 1). To avoid edge effects (i.e. increased variance at borders) in the latent field prediction we 

extended the mesh beyond the English border. Since we are modelling in a Bayesian context, we need to 

specify priors for all parameters; we used normal uninformative priors (with mean set to 0 and variance 

set to 10) for the regression parameters. 

To understand the effect of the reintroduction on the species range expansion we run two main models: 

the first only comprising the natural population (NAT model hereafter) and the second one adding the 

nesting locations of the reintroduced birds (NAT-RE model hereafter).  

Measures to test the robustness for log-Gaussian Cox models are not well established and remain under 

development. Therefore, to test the strength of the results we run three additional models: the first 

including the nesting pairs from the natural population from 2000 to 2010 (note that during that period 

both datasets, including and excluding the reintroduced birds, are identical), the second one including the 

nesting pairs from the natural population from 2011 to 2015 and the third one including the nesting pairs 

from the natural population and the reintroduced population from 2011 to 2015. In addition, to illustrate 

the diagnostic ability of our approach, we plotted a receiver operating characteristic (ROC) curve of the 

NAT model, which compares the fitted probability of presence at each wetland and the observed 

presence/absence (Appendix 2 Fig S2) (Mason and Graham 2002). 

Finally, we determined the 20 most likely areas to be colonised using the two models (NAT and NAT-

RE). For each model we also calculated two scenarios for the predicted values, the first using only the 

estimates of the significant covariates and the second one adding the spatial autocorrelation structure in 

the predicted values.   

RESULTS 

Changes in wetland occupancy by breeding pairs 

We mapped a total of 2,526 wetlands across England ranging from 5 to 24,707 ha with perimeter-to-area 

ratios ranging from 0.002 to 0.077. The proportion of surrounding wetland and the proportion of 
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urbanized areas ranged from 0 to 0.57 and from 0 to 0.81, respectively. When considering the natural 

population only (NAT dataset), the number of occupied wetlands increased steadily in the 15-year time 

period, from one wetland in 2000 in the Norfolk Broads to seven in 2015 spread across Norfolk, 

Cambridgeshire and Yorkshire (Fig 1 and Fig S1). The NAT-RE dataset, which included the reintroduced 

birds only differed from the NAT dataset from 2013 onwards, i.e. from when the reintroduced birds 

started nesting in several areas in Somerset, Gloucestershire and Oxfordshire (Fig 1). The total number of 

breeding pairs reached 30 in 2015 spread over 12 wetland areas across England (Fig 1).  

Drivers of crane colonisation 

In the NAT model, wetland extent positively affected crane colonisation probability, i.e. cranes were 

more likely to settle in larger wetlands (Table 1). This is in contrast to the perimeter-to-area ratio, which 

had a negative effect, i.e. cranes preferred wetlands were edges were minimised (Table 1). There was no 

evidence that the two landscape features, proportion of wetland and urban areas in the surroundings 

affected the cranes’ establishment probability (Table 1). The results from the NAT-RE model were 

similar: wetland extent and the perimeter-to-area ratio showed the same pattern (Table 2). However, in 

this instance the proportion of surrounding wetland area had a small negative effect on colonisation 

probability (Table 2). The results from the three additional models were similar: wetland extent had a 

significant positive effect in the two models including only the nesting pairs from the natural population 

from 2000 to 2010 and from 2011 to 2015 (Appendix 2 Table S1 and S2), and perimeter-to-area ratio had 

a significant negative effect in the model including the nesting pairs from the natural population from 

2000 to 2010 and the model including the nesting pairs from the natural population and the reintroduced 

population from 2011 to 2015 (Appendix 2 Table S1 and S3). In none of the three models the proportion 

of surrounding wetland and urban areas had significant effects. Therefore, we focused on the effect of the 

wetland extent and the perimeter-to-area ratio in the discussion section. To asses model fit we use a ROC 

curve (Appendix 2 Fig S2) which indicates that the NAT-model produces a higher proportion of true-

positives than false-positives, i.e. it predicts the presence of nesting cranes more often in wetlands where 

cranes are observed than in areas where they are not.  

The spatial autocorrelation structure as reflected in the random field        had a strong influence on the 

species’ distribution, especially when considering only the natural population (Fig 2a). Nevertheless, the 

spatial autocorrelation structure had a substantial uncertainty, which increased with the distance from the 
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colonised wetlands (Fig 2b). However, when the reintroduced birds where accounted for, the intensity of 

the spatial autocorrelation structure decreased (Fig 2c). Likewise, the uncertainty was lower, although 

there was increased uncertainty further away from the colonised wetlands (Fig 2d). Thus, the weight of 

the spatial autocorrelation structure relative to the covariates was higher in NAT dataset models than in 

NAT-RE models. We also found an extremely high temporal autocorrelation (> 0.99 in both models) in 

the spatial autocorrelation structure from one year to the next, implying that the spatial structure is 

unlikely to change in the near future, which also means that the colonisation process is progressing at an 

extremely low rate (Tables 1 and 2).   

With respect to the NAT model, when accounting for the spatial autocorrelation and the significant 

covariates, we found that the 20 wetlands most likely to be colonised were in close proximity to the 

currently occupied wetlands in eastern England (Fig 3a). However, when we ignored the spatial 

autocorrelation and simply determined the more suitable wetlands for cranes based on the covariates, we 

found that they were spread across much of England (Fig 3b). The NAT-RE model followed a similar 

pattern: when considering the spatial autocorrelation structure and the significant variables, the most 

likely areas to be colonised were near to the already occupied wetlands (Fig 3c). Likewise, the more 

suitable wetlands in the NAT-RE model were spread across England (Fig 3d). Moreover, the site where 

cranes were reintroduced in the Somerset Levels obtained the third highest score using the NAT model 

estimates. It is also encouraging to note that the reintroduced cranes have nested in two of the top 20 

wetlands predicted by the NAT model (Fig 3b). Of the top 20 wetlands that each model highlighted, 

seven were selected by both NAT and NAT-RE models.  

DISCUSSION 

In this study, for the first time, point process models were applied to gain an understanding of and to 

predict the recolonisation process of a bird species in a dynamic population. Specifically, we used marked 

log-Gaussian Cox process models to model the spatio-temporal distribution of cranes in England, where 

the species is recolonising several wetland areas, through immigration from mainland Europe and a 

subsequent reintroduction in SW England, after the extirpation of its breeding population in the 16
th

 

century. We found that crane colonisation is progressing at a very slow rate and that they favour areas 

near already colonised wetlands. However, within those areas, cranes are selecting large wetlands with 
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low perimeter-to-area ratios. In addition, the crane reintroduction has increased the probability of 

recolonisation in the west of England. 

The main advantage of log-Gaussian Cox process models is that they account for spatial structure that 

remains unexplained by the covariates by using a latent field that can be modelled over time and 

captures the dynamism of ecological systems. In our case, the spatial autocorrelation structure was a 

proxy for the colonisation process; since cranes started recolonising England from the east, the occupied 

wetland tend to be restricted to the eastern part of the country, even though there are apparently 

suitable wetlands further afield. In ecological terms the factors affecting the spatial structure of the 

occupied wetlands are likely to be natal philopatry and conspecific attraction (Timoney 1999) which 

would explain why occupied wetlands aggregate in clusters in some areas, such as in the Norfolk Broads 

and Cambridgeshire Fens, with cranes tending to settle adjacent to areas that are already occupied 

(Timoney 1999). These phenomena are well captured in the spatial autocorrelation structure, which 

show a gradient through the east-west axis, with higher values on the eastern side. The high temporal 

autocorrelation obtained in our models show that the spatial autocorrelation structure should remain 

constant over time, which indicates that turnover of occupied wetlands between years is low and as such 

colonisation will progress slowly (Table 1 and 2). Nevertheless, it is important to note that the spatial 

autocorrelation structure could also be capturing spatio-temporal aspects other than the colonisation 

process that we are unaware of. 

Overall, our models suggest that cranes prefer large wetlands with low perimeter-to-area ratios (i.e. low 

amounts of edge habitat) (Tables 1 and 2). Nevertheless, the four selected covariates only captured 

general wetland features; therefore, there could be a number of site-level characteristics relevant for crane 

colonisation that remained unaccounted for. We observe that at a country-level, the spatial autocorrelation 

structure of the marked point process is more relevant in determining the potential colonisation areas than 

the spatial characteristics of the wetlands, with wetland near to occupied sites having a higher probability 

of occupancy than wetlands further away (Figs 2a and 2c). However, at a regional-level, differences in the 

spatial autocorrelation structure among wetlands are reduced and the importance of the environmental 

covariates increases significantly. Therefore, assuming constant environmental conditions and the same 
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rate of spread as the previous 15 years, our study indicates that cranes will colonise large wetlands with 

low perimeter-to-area ratios near to the currently occupied wetlands.  

Interestingly, the two covariates that positively affected crane colonisation (in both the NAT and the 

NAT-RE model), large wetland extent and low perimeter-to area ratio, are indicators of high quality 

habitat and low fragmentation (Laurance and Yensen 1991). These variables are linked to high species 

richness, abundance and nest success in several grassland and wetland bird species, such as upland 

sandpiper (Bartramia longicauda), purple heron (Ardea purpurea) and little bittern (Ixobrychus minutus) 

(Burger et al. 1994, Helzer and Jelinski 1999; Winter et al. 2006, Benassi et al. 2007). Several 

mechanisms may explain birds’ preference for larger wetlands: higher habitat heterogeneity (Golet et al. 

2001), higher conspecific attraction (Benoit and Askins 2002), longer hydroperiods (Snodgrass et al. 

2000), adequate territory size requirements (Worrall et al. 1997) or higher invertebrate food availability 

(Euliss and Mushet 1999, Schulz 2004, Tarr et al. 2005). In addition, in England, most of the remaining 

large wetlands are under protection being commonly designated as Sites of Special Scientific Interest 

(SSSI, Natural England, https://designatedsites.naturalengland.org.uk/) and there is evidence that 

protected wetlands have been used by colonising birds as stepping stones for the permanent population 

establishment (Hiley et al. 2013). 

The comparison between the NAT and the NAT-RE model produced some interesting information about 

the effect of the reintroduction on potential population spread. Our results indicate that, prior to the 

reintroduction, even though the model predicted a westward spread, the probability of the species 

reaching the west of England was extremely low, since the spatial autocorrelation structure should remain 

constant over time (Fig 2a). Thus, even large wetlands with low perimeter-to-area ratios scored 

substantially low colonisation probabilities compared to less suitable sites in eastern England. Our ability 

to predict the likelihood of colonisation (Fig 2b) in wetlands further away from the core colonised areas is 

hindered by the uncertainty associated to the spatial autocorrelation structure. However, after the 

reintroduction, the potential colonisation areas spread along an east-west axis in the south of England (Fig 

2c). Remarkably, the spatial autocorrelation decreased dramatically in the RE-NAT model (Figs 2a and 

2c), implying that the importance of relevant covariates (the habitat) in the colonisation process increased, 

which has relevant ecological implications: reintroduced cranes are tending to colonise wetlands more as 

a function of habitat suitability than proximity to already occupied wetlands. This increase in dispersal 

https://designatedsites.naturalengland.org.uk/
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might be due to the particular aspects of the reintroduction. For example, large numbers of birds reaching 

maturity the same year, in contrast to the natural population where the process is gradual, could have 

increased competition for suitable breeding territories locally which forced the pairs to disperse further 

away; and/or the effect of the natal philopatry could have been reduced because the reintroduced birds 

were hand-reared in enclosed facilities. Thus, even though our results suggest areas far away from the 

current core range should remain unoccupied, the reintroduction could be seen as human-assisted long-

distance dispersal event that would promote the population spread westward. Moreover, there is already 

evidence of connectivity between the natural and the reintroduced population, with a pair formed by one 

individual from each population nesting in 2015. 

To date, log-Gaussian Cox process models have been applied in several areas of research, such as 

meteorology or policy (Illian et al. 2012b, Illian et al. 2013, Cosandey-Godin et al. 2014, Gómez-Rubio et 

al. 2015). However, these modelling methods do not use a joint approach as suggested here. Thus, this 

study provides a new approach to modelling spatial change in dynamic populations. Although we focus 

on a population that is expanding its range, this methodology can be used when population ranges are 

contracting or shifting and it could be particularly relevant for the study and conservation of rare species 

under climate change, where information on life history traits is lacking and management strategies are 

time sensitive. Another field that could benefit from this approach is the study of biological invasion, 

since the study of particular invasion events is usually challenging due to small sample sizes and the 

influence of local factors (Guisan et al. 2014).  

STLGCP models could help predict the spatial change of population distribution through the modelling of 

the latent field even when the underlying causes for that change are only partially understood. In our case 

we only modelled potentially suitable habitat (wetlands), but this approach could be extended by adding 

non-suitable habitat in the model when source-sink dynamics are suspected. Moreover, density 

dependence processes could be added by modelling population counts rather than presence/absence data. 

Furthermore, another potential application of this method would be to jointly model changes in 

population distribution and habitat over time, which would be particularly relevant in light of climate 

change and habitat fragmentation. Finally, we want to make a call to encourage cross-disciplinary 

collaborations between ecologist and statisticians to shade light on complex processes that require 

cutting-edge methodologies. 
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Figure Legends 

Figure 1: Delaunay triangulation (mesh) over the study area. Green dots represent the 2,526 wetlands in 

England, black dots the wetlands occupied by nesting pairs from the natural population and grey dots the 

wetlands occupied by nesting pairs from the reintroduced population in 2015.  
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Figure 2: The (a) posterior mean and (b) the posterior standard deviation of the random field        

(including the intercept   ) in 2015 estimated in the NAT model which, only includes the nesting pairs 

from the natural population; and the (c) posterior mean and (d) the posterior standard deviation of the 

random field        (including the intercept   ) in 2015 estimated in the NAT-RE model, which includes 

the nesting pairs from the natural population and the reintroduced population. Once accounted for the 

effect of the covariates, given the spatial autocorrelation structure, the observations of cranes occurrence 

are considered to be independent. The spatial autocorrelation structure accounts for the colonisation 

dynamics. The higher values in the posterior mean indicate a stronger autocorrelation structure. 
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Figure 3: Wetlands most likely to be colonised in the near future. Green dots represent the 2,526 wetlands 

in England, black dots the wetlands occupied by nesting pairs from the natural population and grey dots 

the wetlands occupied by nesting pairs from the reintroduced population. The red dots represent the 20 

most likely wetlands to be colonised, when (a) considering the posterior mean of the covariates and the 

spatial autocorrelation structure and (b) considering only the posterior mean of the covariates estimated in 

the NAT model which only includes the nesting pairs from the natural population; and  when (c) 

considering the posterior mean of the covariates and the spatial autocorrelation structure and (d) 

considering only the posterior mean of the covariates estimated in the NAT-RE model which includes the 

nesting pairs from the natural population and the reintroduced population. 
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Table Legends 

Table 1: Posterior means, standard deviations and 95% credible intervals for the covariates and random 

field        (spatial smoothness, scale and temporal autocorrelation of the random field and strength and 

direction of the response, respectively) estimated in the NAT model which only includes the nesting pairs 

from the natural population.  

 Mean SD 2.5% quant. 97.5% quant. 

Wetland extent 1.7793 0.2042 1.3784 2.1798 

Perimeter-to-area ratio -0.9678 0.3575 -1.6697 -0.2664 

Proportion of surrounding wetland -0.6140 0.5329 -1.6604 0.4314 

Proportion of surrounding urbanized areas 0.5525 0.5334 -0.4948 1.5990 

Log() -3.9672 0.0335 -4.0386 -3.8480 

Log() -0.5706 0.0213 -0.6164 -0.4842 

 0.9998 0.0001 0.9995 1.0000 

 0.0458 0.0267 -0.0108   0.1402 
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Table 2: Posterior means, standard deviations and 95% credible intervals for the covariates and random 

field        (spatial smoothness, scale and temporal autocorrelation of the random field and strength and 

direction of the response, respectively) estimated in the NAT-RE model which includes the nesting pairs 

from the natural population and the reintroduced population. 

 Mean SD 2.5% quant. 97.5% quant. 

Wetland extent 0.1234 0.0494 0.0263 0.2203 

Perimeter-to-area ratio -3.1559 0.3486 -3.8403 -2.4721 

Proportion of surrounding wetland -0.6920 0.3377 -1.3550 -0.0296 

Proportion of surrounding urbanized areas 0.0402 0.3966 -0.7385 0.8183 

Log() -3.5466 0.4247 -4.4008 -2.7320 

Log() -0.4607 0.2433 -0.9746 -0.0249 

 0.9992 0.0007 0.9973 0.9999 

 0.0795 0.3169 -0.5212 0.7213 

 


