111 research outputs found

    γ-Tocopherol Attenuates Ozone-induced Exacerbation of Allergic Rhinosinusitis in Rats

    Get PDF
    Compared to healthy subjects, individuals with allergic airway disease (e.g., asthma, allergic rhinitis) have enhanced inflammatory responses to inhaled ozone. We created a rodent model of ozone-enhanced allergic nasal responses in Brown Norway rats to test the therapeutic effects of the dietary supplement g-tocopherol (γT). Ovalbumin (OVA)-sensitized rats were intranasally challenged with 0% or 0.5% OVA (in saline) on Days 1 and 2, and then exposed to 0 or 1 ppm ozone (eight hours/day) on Days 4 and 5. Rats were also given 0 or 100 mg/kg γT (p.o., in corn oil) on days 2 through 5, beginning twelve hours after the last OVA challenge. On Day 6, nasal tissues were collected for histological evaluation and mor-phometric analyses of intraepithelial mucosubstances (IM) and eosinophilic inflammation. Nasal septal tissue was microdissected and analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) for mucin glycoprotein 5AC (MUC5AC) expression levels. Histological analysis revealed mild to moderate eosinophil influx in the mucosa lining the nasal airways and maxillary sinus of OVA-challenged rats (eosinophilic rhinosinusitis). Ozone exposure of allergic rats further increased eosinophils in the maxillary sinus (400%), nasolacrimal duct (250%), and proximal midseptum (150%). Storage of intraepithelial mucosubstances (IM) was not significantly affected by OVA challenge in filtered air-exposed rats, but it was increased by ozone in the septum (45%) and maxillary sinus (55%) of allergic compared to control rats. Treatment with γT attenuated the ozone/ OVA-induced synergistic increases in IM and mucosal eosinophils in both nasal and paranasal airways. γ-Tocopherol also blocked OVA and ozone-induced MUC5AC gene expression. Together, these data describe a unique model of ozone enhancement of allergic rhinosinusitis and the novel therapeutic efficacy of a common supplement, γT, to inhibit ozone exacerbation of allergic airway responses

    Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation

    Get PDF
    <div><p>Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in <i>Cftr<sup>F508del</sup></i> homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the <i>F508del-CFTR</i> mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from <i>F508del</i> homozygous CF patients, and these effects persisted for 24 h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both <i>in vivo</i>, in mice, and <i>in vitro</i>, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 <i>F508del-CFTR</i> homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells <i>in vivo</i>, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of <i>TNF/TNF-alpha (tumor necrosis factor)</i> and <i>CXCL8</i> (<i>chemokine [C-X-C motif] ligand 8</i>) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the <i>F508del-CFTR</i> mutation.</p></div

    Vitamin E forms inhibit IL-13/STAT6-induced eotaxin-3 secretion by up-regulation of PAR4, an endogenous inhibitor of atypical PKC in human lung epithelial cells

    Get PDF
    Eotaxin-3 (CCL-26), a potent chemokine for eosinophil recruitment and contributing significantly to the pathogenesis of asthma, is secreted by lung epithelial cells in response to T helper 2 cytokines including interleukin 13 (IL-13). Here we showed that vitamin E forms, but not their metabolites, differentially inhibited IL-13-stimulated generation of eotaxin-3 in human lung epithelial A549 cells. The relative inhibitory potency was γ-tocotrienol (γ-TE) (IC50 ~15 μM) > γ-tocopherol, δ-tocopherol (IC50 ~25-50 μM) > α-tocopherol. Consistent with suppression of eotaxin, γ-TE treatment impaired IL-13-induced phosphorylation of STAT6, the key transcription factor for activation of eotaxin expression, and consequently blocked IL-13 stimulated DNA-binding activity of STAT6. In search of the upstream target of γTE by using inhibitor and siRNA approaches, we discovered that the atypical protein kinase C (aPKC) signaling, instead of classical PKC, p38 MAPK, JNK or ERK, played a critical role in IL-13-stimulated eotaxin generation and STAT6 activation. While showing no obvious effect on aPKC expression or phosphorylation, γ-TE treatment resulted in increased expression of PAR4, an endogenous negative regulator of aPKCs. Importantly, γ-TE treatment led to enhanced formation of aPKC/PAR4 complex that is known to reduce aPKC activity via protein-protein crosstalk. Our study demonstrated that γ-TE inhibited IL-13/STAT6-activated eotaxin secretion via up-regulation of PAR4 expression and enhancement of aPKC-PAR-4 complex formation. These results support the notion that specific vitamin E forms may be useful anti-asthmatic agents

    Ozone enhancement of lower airway allergic inflammation is prevented by γ-tocopherol

    Get PDF
    Ozone is a commonly encountered environmental oxidant which has been linked to asthma exacerbation in epidemiological studies. Ozone induces airway inflammation and enhances response to inhaled allergen. It has been suggested that antioxidant therapy may minimize the adverse effects of ozone in asthma. We have previously shown that the antioxidant gamma-tocopherol (γT), an isoform of vitamin E, also has anti-inflammatory effects. We employed a Brown Norway rat model of ozone-enhanced allergic responses to test the therapeutic effects of γT on O3-induced airway inflammation. Ovalbumin (OVA) -sensitized rats were intranasally challenged with 0 or 0.5% OVA on Days 1 and 2, and exposed to 0 or 1 ppm ozone (8h/day) on Days 4 and 5. Rats were also given 0 or 100 mg/kg γT on Days 2 through 5. Pulmonary tissue and bronchoalveolar lavage fluid (BALF) were collected on Day 6. OVA challenge caused increased total cells (267% increase) and eosinophils (4000%) in BALF that was unaffected by ozone exposure. Morphometric evaluation of lung tissue revealed increases in intraepithelial mucosubstances (IM) (300%) and subepithelial eosinophils (400%) in main axial airways. Ozone exposure of allergic rats enhanced IM increases in proximal axial airways (200%), induced cys-leukotrienes, MCP-1 and IL-6 production in BALF, and upregulated expression of IL-5 and IL-13 mRNA. γT treatment had no effect on IM increases by allergen, but blocked enhancement by ozone. γT attenuated both OVA- or ozone –stimulated eosinophilic infiltration, and increases of BALF cys-leukotrienes, MCP-1 and IL-6, as well as IL-5 and IL-13 mRNA. These data demonstrate broad anti-inflammatory effects of a γT and suggest it may be an effective therapy of allergic airway inflammation

    Influence of organic versus inorganic dietary selenium supplementation on the concentration of selenium in colostrum, milk and blood of beef cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selenium (Se) is important for the postnatal development of the calf. In the first weeks of life, milk is the only source of Se for the calf and insufficient level of Se in the milk may lead to Se deficiency. Maternal Se supplementation is used to prevent this.</p> <p>We investigated the effect of dietary Se-enriched yeast (SY) or sodium selenite (SS) supplements on selected blood parameters and on Se concentrations in the blood, colostrum, and milk of Se-deficient Charolais cows.</p> <p>Methods</p> <p>Cows in late pregnancy received a mineral premix with Se (SS or SY, 50 mg Se per kg premix) or without Se (control – C). Supplementation was initiated 6 weeks before expected calving. Blood and colostrum samples were taken from the cows that had just calved (Colostral period). Additional samples were taken around 2 weeks (milk) and 5 weeks (milk and blood) after calving corresponding to Se supplementation for 6 and 12 weeks, respectively (Lactation period) for Se, biochemical and haematological analyses.</p> <p>Results</p> <p>Colostral period. Se concentrations in whole blood and colostrum on day 1 <it>post partum </it>and in colostrum on day 3 <it>post partum </it>were 93.0, 72.9, and 47.5 μg/L in the SY group; 68.0, 56.0 and 18.8 μg/L in the SS group; and 35.1, 27.3 and 10.5 μg/L in the C group, respectively. Differences among all the groups were significant (<it>P </it>< 0.01) at each sampling, just as the colostrum Se content decreases were from day 1 to day 3 in each group. The relatively smallest decrease in colostrum Se concentration was found in the SY group (<it>P </it>< 0.01).</p> <p>Lactation period. The mean Se concentrations in milk in weeks 6 and 12 of supplementation were 20.4 and 19.6 μg/L in the SY group, 8.3 and 11.9 μg/L in the SS group, and 6.9 and 6.6 μg/L in the C group, respectively. The values only differed significantly in the SS group (<it>P </it>< 0.05). The Se concentrations in the blood were similar to those of cows examined on the day of calving. The levels of glutathione peroxidase (GSH-Px) activity were 364.70, 283.82 and 187.46 μkat/L in the SY, SS, and C groups, respectively. This was the only significantly variable biochemical and haematological parameter.</p> <p>Conclusion</p> <p>Se-enriched yeast was much more effective than sodium selenite in increasing the concentration of Se in the blood, colostrum and milk, as well as the GSH-Px activity.</p

    Molecular and functional expression of anion exchangers in cultured normal human nasal epithelial cells

    Get PDF
    AIMS: Anions have an important role in the regulation of airway surface liquid (ASL) volume, viscosity and pH. However, functional localization and regulation of anion exchangers (AEs) have not been clearly described. The aim of this study was to investigate the regulation of AE mRNA expression level in accordance with mucociliary differentiation and the functional expression of AEs cultured normal human nasal epithelial (NHNE) cells. METHODS: Nasal mucosal specimens from three patients are obtained and serially cultured cells are subjected to morphological examinations, RT-PCR, Western blot analysis and immunocytochemistry. AE activity is assessed by pHi measurements. RESULTS: Expression of ciliated cells on the apical membrane and expression of MUC5AC, a marker of mucous differentiation, increased with time. AE2 and SLC26A4 mRNA expression decreased as mucociliary differentiation progressed, and AE4, SLC26A7 and SLC26A8 mRNA expression increased on the 14th and 28th day after confluence. Accordingly, AE4 protein expression also progressively increased. AE activity in 100 mM K(+) buffer solutions was nearly twofold higher than that in 5 mM K(+) buffer solutions. Moreover, only luminal AE activity increased about fourfold over the control in the presence of 5 microM forskolin. In the presence of 100 microM adenosine-5'-triphosphate (ATP) which evokes intracellular calcium signalling through activation of purinergic receptors, only luminal AE activity was again significantly increased. On the other hand, 500 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of most SLC4 and SLC26AE isoforms, nearly abolished AE activity in both luminal and basolateral membranes. We found that AE activity was affected by intracellular cAMP and calcium signalling in the luminal membrane and was DIDS-sensitive in both membranes of cultured NHNE cells. CONCLUSION: Our findings through molecular and functional studies using cultured NHNE cells suggest that AEs may have an important role in the regulation of ASL.ope

    Predominant constitutive CFTR conductance in small airways

    Get PDF
    BACKGROUND: The pathological hallmarks of chronic obstructive pulmonary disease (COPD) are inflammation of the small airways (bronchiolitis) and destruction of lung parenchyma (emphysema). These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter. METHODS: We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. RESULTS: In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath) of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25), but when gluconate replaced luminal Cl(-), the bionic Cl(- )diffusion potentials (-58 ± 3 mV; n = 25) were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl(- )permeability was at least 5 times greater than Na(+ )permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM)+IBMX (100 μM), ATP (100 μM), or adenosine (100 μM), but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM), GlyH-101* (5–50 μM), and CFTR(Inh)-172* (5 μM). RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. CONCLUSION: These results indicate that the small airway of the pig is characterized by a constitutively active Cl(- )conductance that is most likely due to CFTR

    Cellular Mechanisms Underlying the Laxative Effect of Flavonol Naringenin on Rat Constipation Model

    Get PDF
    BACKGROUND & AIMS: Symptoms of constipation are extremely common, especially in the elderly. The present study aim to identify an efficacious treatment strategy for constipation by evaluating the secretion-promoting and laxative effect of a herbal compound, naringenin, on intestinal epithelial anion secretion and a rat constipation model, respectively. METHODS/PRINCIPAL FINDINGS: In isolated rat colonic crypts, mucosal addition of naringenin (100 microM) elicited a concentration-dependent and sustained increase in the short-circuit current (I(SC)), which could be inhibited in Cl- free solution or by bumetanide and DPC (diphenylamine-2-carboxylic acid), but not by DIDS (4, 4'- diisothiocyanatostilbene-2, 2'-disulfonic acid). Naringenin could increase intracellular cAMP content and PKA activity, consisted with that MDL-12330A (N-(Cis-2-phenyl-cyclopentyl) azacyclotridecan-2-imine-hydrochloride) pretreatment reduced the naringenin-induced I(SC). In addition, significant inhibition of the naringenin-induced I(SC) by quinidine indicated that basolateral K+ channels were involved in maintaining this cAMP-dependent Cl- secretion. Naringenin-evoked whole cell current which exhibited a linear I-V relationship and time-and voltage- independent characteristics was inhibited by DPC, indicating that the cAMP activated Cl- conductance most likely CFTR (cystic fibrosis transmembrane conductance regulator) was involved. In rat constipation model, administration of naringenin restored the level of fecal output, water content and mucus secretion compared to loperamide-administrated group. CONCLUSIONS: Taken together, our data suggest that naringenin could stimulate Cl- secretion in colonic epithelium via a signaling pathway involving cAMP and PKA, hence provide an osmotic force for subsequent colonic fluid secretion by which the laxative effect observed in the rat constipation model. Naringenin appears to be a novel alternative treatment strategy for constipation

    A novel treatment of cystic fibrosis acting on-target:cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR

    Get PDF
    We previously reported that the combination of two safe proteostasis regulators, cysteamine and epigallocatechin gallate (EGCG), can be used to improve deficient expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in patients homozygous for the CFTR Phe508del mutation. Here we provide the proof-of-concept that this combination treatment restored CFTR function and reduced lung inflammation (P<0.001) in Phe508del/Phe508del or Phe508del/null-Cftr (but not in Cftr-null mice), provided that such mice were autophagy-competent. Primary nasal cells from patients bearing different class II CFTR mutations, either in homozygous or compound heterozygous form, responded to the treatment in vitro. We assessed individual responses to cysteamine plus EGCG in a single-centre, open-label phase-2 trial. The combination treatment decreased sweat chloride from baseline, increased both CFTR protein and function in nasal cells, restored autophagy in such cells, decreased CXCL8 and TNF-α in the sputum, and tended to improve respiratory function. These positive effects were particularly strong in patients carrying Phe508del CFTR mutations in homozygosity or heterozygosity. However, a fraction of patients bearing other CFTR mutations failed to respond to therapy. Importantly, the same patients whose primary nasal brushed cells did not respond to cysteamine plus EGCG in vitro also exhibited deficient therapeutic responses in vivo. Altogether, these results suggest that the combination treatment of cysteamine plus EGCG acts ‘on-target' because it can only rescue CFTR function when autophagy is functional (in mice) and improves CFTR function when a rescuable protein is expressed (in mice and men). These results should spur the further clinical development of the combination treatment

    Regulation of pH During Amelogenesis

    Get PDF
    During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation
    corecore