166 research outputs found

    Disferlinopaties i antecedents familiars

    Get PDF
    Les disferlinopaties, un tipus de distrofies musculars d'herència autosòmica recessiva, poden ser desenvolupades per persones que no tinguin antecedents familiars de la malaltia. Així ho han demostrat per primera vegada investigadors de l'Hospital de Santa Creu i Sant Pau. Els científics han avaluat, a més, els nivells de disferlina amb un mètode no invasiu, sense necessitat de practicar una biòpsia muscular.Las disferlinopatías, un tipo de distrofias musculares de herencia autosómica recesiva, pueden ser desarrolladas por personas que no tengan antecedentes familiares de la enfermedad. Así lo han demostrado por primera vez investigadores del Hospital de Santa Creu i Sant Pau. Los científicos han evaluado, además, los niveles de disferlina con un método no invasivo, sin necesidad de practicar una biopsia muscular

    Caveats and Pitfalls of SOX1 Autoantibody Testing With a Commercial Line Blot Assay in Paraneoplastic Neurological Investigations

    Get PDF
    SOX1 autoantibodies are considered markers of small cell lung cancer (SCLC) and paraneoplastic neurological syndromes (PNS) and are usually determined by commercial line blot in many clinical services. Recent studies suggested that SOX1 autoantibodies also occur in patients with neuropathies unrelated to SCLC, questioning the value of SOX1 autoantibodies as paraneoplastic biomarkers. Here, we compared the specificity and sensitivity of a commercial line blot (Euroimmun, Lübeck, Germany) with those of an in house cell-based assay (CBA) with HEK293 cells transfected with SOX1. Overall, 210 patients were included in the study, 139 patients with polyneuropathies without SCLC, and 71 with disorders associated with SOX1 autoantibodies detected with the in-house CBA. Forty one of these 71 cases had been referred to our laboratory for onconeuronal antibody assessment and 30/71 were patients with known PNS and SCLC. None of the patients with polyneuropathies had SOX1 autoantibodies by either line blot or CBA (specificity of the immunoblot: 100%; 95%C.I.: 97.8–100). Among the 71 patients with CBA SOX1 autoantibodies, only 53 were positive by line blot (sensitivity: 74.6%; 95%C.I.: 62.9–84.2). Lung cancer was detected in 37/41 (90%; 34 with SCLC) patients referred for onconeuronal antibody assessment and 34 of them also had a PNS. Our study confirms the association of SOX1 autoantibodies with SCLC and PNS. The line blot test misses 25% of the cases; therefore, to minimize the frequency of false negative results we recommend the use of a confirmatory test, such as CBA, in patients suspected to have a SCLC-related PNS

    Effect of monovalency on anti-contactin-1 IgG4

    Get PDF
    Altres ajuts: Agence Nationale pour le Développement de la Recherche en Santé ; Association Française contre les Myopathies ; ArgenxAutoimmune nodopathies (AN) have been diagnosed in a subset of patients fulfilling criteria for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) who display no or poor response to intravenous immunoglobulins. Biomarkers of AN are autoantibodies, mainly IgG4, directed against the ternary paranodal complex composed by neurofascin-155, contactin-1 (CNTN1), and Contactin-associated-protein-1 (CASPR1) or against the nodal isoforms of neurofascin. IgG4 can undergo a Fab-arm exchange (FAE) which results in functionally monovalent antibody. This phenomenon differentially affects the pathogenicity of IgG4 depending on the target of autoantibodies. Here, we have evaluated this issue by examining the impact of valency on anti-CNTN1 IgG4 which induces paranodal destruction through a function blocking activity. Sera were obtained from 20 patients with AN associated with anti-CNTN1 antibodies. The proportion of monospecific/bispecific anti-CNTN1 antibodies was estimated in each patient by ELISA by examining the ability of serum antibodies to cross-link untagged CNTN1 with biotinylated CNTN1. To determine the impact of monovalency, anti-CNTN1 IgG4 were enzymatically digested into monovalent Fab and tested in vitro on cell aggregation assay. Also, intraneural injections were performed to determine whether monovalent Fab and native IgG4 may penetrate paranode, and antibody infiltration was monitored 1- and 3-days post injection. We found that the percentage of monospecific antibodies were lower than 5% in 14 out of 20 patients (70%), suggesting that IgG4 have undergone extensive FAE in situ. The levels of monospecific antibodies correlated with the titers of anti-CNTN1 antibodies. However, no correlation was found with clinical severity, and patients with low or high percentage of monospecific antibodies similarly showed a severe phenotype. Native anti-CNTN1 IgG4 were shown to inhibit the interaction between cells expressing CNTN1/CASPR1 and cells expressing neurofascin-155 using an in vitro aggregation assay. Similarly, monovalent Fab significantly inhibited the interaction between CNTN1/CASPR1 and neurofascin-155. Intraneural injections of Fab and native anti-CNTN1 IgG4 indicated that both mono- and bivalent anti-CNTN1 IgG4 potently penetrated the paranodal regions and completely invaded this region by day 3. Altogether, these data indicate anti-CNTN1 IgG4 are mostly bispecific in patients, and that functionally monovalent anti-CNTN1 antibodies have the pathogenic potency to alter paranode

    Hypoxia triggers IFN-I production in muscle: Implications in dermatomyositis

    Get PDF
    Dermatomyositis is an inflammatory myopathy characterized by symmetrical proximal muscle weakness and skin changes. Muscle biopsy hallmarks include perifascicular atrophy, loss of intramuscular capillaries, perivascular and perimysial inflammation and the overexpression of IFN-inducible genes. Among them, the retinoic-acid inducible gene 1 (RIG-I) is specifically overexpressed in perifascicular areas of dermatomyositis muscle. The aim of this work was to study if RIG-I expression may be modulated by hypoxia using an in vitro approach. We identified putative hypoxia response elements (HRE) in RIG-I regulatory regions and luciferase assays confirmed that RIG-I is a new HIF-inducible gene. We observed an increase expression of RIG-I both by Real time PCR and Western blot in hypoxic conditions in human muscle cells. Cell transfection with a constitutive RIG-I expression vector increased levels of phospho-IRF-3, indicating that RIG-I promotes binding of transcription factors to the enhancer sequence of IFN. Moreover, release of IFN-beta was observed in hypoxic conditions. Finally, HIF-1 alpha overexpression was confirmed in the muscle biopsies and in some RIG-I positive perifascicular muscle fibres but not in controls. Our results indicate that hypoxia triggers the production of IFN-I in vitro, and may contribute to the pathogenesis of DM together with other inflammatory factors

    IgG4 Valency Modulates the Pathogenicity of Anti-Neurofascin-155 IgG4 in Autoimmune Nodopathy

    Get PDF
    Altres ajuts: Agence Nationale pour la Recherche; Association Française contre les Myopathies (23593).Background and Objective s : IgG4 autoantibodies to neurofascin-155 (Nfasc155) are associated with a subgroup of patients with chronic inflammatory demyelinating polyneuropathy (CIDP), currently named autoimmune nodopathy. We previously demonstrated that those antibodies alter conduction along myelinated axons by inducing Nfasc155 depletion and paranode destruction. In blood, IgG4 have the potency to exchange their moiety with other unrelated IgG4 through a process called Fab-arm exchange (FAE). This process results in functionally monovalent antibodies and may affect the pathogenicity of autoantibodies. Here, we examined this issue and whether FAE is beneficial or detrimental for Nfasc155 autoimmune nodopathy. Methods : The bivalency and monospecificity of anti-Nfasc155 were examined by sandwich ELISA in 10 reactive patients, 10 unreactive CIDP patients, and 10 healthy controls. FAE was induced in vitro using reduced glutathione and unreactive IgG4, and the ratio of the : light chain was monitored. To determine the pathogenic potential of bivalent anti-Nfasc155 IgG4, autoantibodies derived from patients were enzymatically cleaved into monovalent Fab and bivalent F(ab')2 or swapped with unreactive IgG4 and then were injected in neonatal animals. Results : Monospecific bivalent IgG4 against Nfasc155 were detected in the serum of all reactive patients, indicating that a fraction of IgG4 have not undergone FAE in situ. These IgG4 were, nonetheless, capable of engaging into FAE with unreactive IgG4 in vitro, and this decreased the levels of monospecific antibodies and modulated the ratio of the : light chain. When injected in animals, monovalent anti-Nfasc155 Fab did not alter the formation of paranodes; by contrast, both native anti-Nfasc155 IgG4 and F(ab')2 fragments strongly impaired paranode formation. The promotion of FAE with unreactive IgG4 also strongly diminished the pathogenic potential of anti-Nfasc155 IgG4 in animals and decreased IgG4 clustering on Schwann cells. Discussion : Our findings demonstrate that monospecific and bivalent anti-Nfasc155 IgG4 are detected in patients and that those autoantibodies are the pathogenic ones. The transformation of anti-Nfasc155 IgG4 into monovalent Fab or functionally monovalent IgG4 through FAE strongly decreases paranodal alterations. Bivalency thus appears crucial for Nfasc155 clustering and paranode destruction

    Chronic intestinal pseudoobstruction and ophthalmoplegia in a patient with mitochondrial myopathy

    Get PDF
    A 38 year old woman having chronic intestinal pseudoobstruction associated with mitochondrial myopathy is reported. The clinical and radiographic features suggested the diagnosis of chronic intestinal pseudoobstruction. Muscular atrophy and ophthalmoplegia led to muscle biopsy, which disclosed accumulation of normal and abnormal mitochondria ('ragged red fibres'), characteristic of mitochondrial myopathy

    Proteasome inhibitors reduce thrombospondin-1 release in human dysferlin-deficient myotubes

    Get PDF
    Altres ajuts: This project has been funded by projects from the Fundación Isabel Gemio to II, EG and JDM and by Fundación Ramón Areces (CIVP18A3903) to NdL.Dysferlinopathies are a group of muscle disorders causing muscle weakness and absence or low levels of dysferlin, a type-II transmembrane protein and the causative gene of these dystrophies. Dysferlin is implicated in vesicle fusion, trafficking, and membrane repair. Muscle biopsy of patients with dysferlinopathy is characterized by the presence of inflammatory infiltrates. Studies in the muscle of both human and mouse models of dysferlinopathy suggest dysferlin deficient muscle plays a role in this inflammation by releasing thrombospondin-1. It has also been reported that vitamin D3 treatment enhances dysferlin expression. The ubiquitin-proteasome system recognizes and removes proteins that fail to fold or assemble properly and previous studies suggest that its inhibition could have a therapeutic effect in muscle dystrophies. Here we assessed whether inhibition of the ubiquitin proteasome system prevented degradation of dysferlin in immortalized myoblasts from a patients with two missense mutations in exon 44. To assess proteasome inhibition we treated dysferlin deficient myotubes with EB1089, a vitamin D3 analog, oprozomib and ixazomib. Western blot was performed to analyze the effect of these treatments on the recovery of dysferlin and myogenin expression. TSP-1 was quantified using the enzyme-linked immunosorbent assay to analyze the effect of these drugs on its release. A membrane repair assay was designed to assess the ability of treated myotubes to recover after membrane injury and fusion index was also measured with the different treatments. Data were analyzed using a one-way ANOVA test followed by Tukey post hoc test and analysis of variance. A p ≤ 0.05 was considered statistically significant. Treatment with proteasome inhibitors and EB1089 resulted in a trend towards an increase in dysferlin and myogenin expression. Furthermore, EB1089 and proteasome inhibitors reduced the release of TSP-1 in myotubes. However, no effect was observed on the repair of muscle membrane after injury. Our findings indicate that the ubiquitin-proteasome system might not be the main mechanism of mutant dysferlin degradation. However, its inhibition could help to improve muscle inflammation by reducing TSP-1 release. The online version contains supplementary material available at 10.1186/s12891-020-03756-7

    Caveats and pitfalls of SOX1 autoantibody testing with a commercial line blot assay in paraneoplastic neurological investigations

    Get PDF
    SOX1 autoantibodies are considered markers of small cell lung cancer (SCLC) and paraneoplastic neurological syndromes (PNS) and are usually determined by commercial line blot in many clinical services. Recent studies suggested that SOX1 autoantibodies also occur in patients with neuropathies unrelated to SCLC, questioning the value of SOX1 autoantibodies as paraneoplastic biomarkers. Here, we compared the specificity and sensitivity of a commercial line blot (Euroimmun, LĂĽbeck, Germany) with those of an in house cell-based assay (CBA) with HEK293 cells transfected with SOX1. Overall, 210 patients were included in the study, 139 patients with polyneuropathies without SCLC, and 71 with disorders associated with SOX1 autoantibodies detected with the in-house CBA. Forty one of these 71 cases had been referred to our laboratory for onconeuronal antibody assessment and 30/71 were patients with known PNS and SCLC. None of the patients with polyneuropathies had SOX1 autoantibodies by either line blot or CBA (specificity of the immunoblot: 100%; 95%C.I.: 97.8-100). Among the 71 patients with CBA SOX1 autoantibodies, only 53 were positive by line blot (sensitivity: 74.6%; 95%C.I.: 62.9-84.2). Lung cancer was detected in 37/41 (90%; 34 with SCLC) patients referred for onconeuronal antibody assessment and 34 of them also had a PNS. Our study confirms the association of SOX1 autoantibodies with SCLC and PNS. The line blot test misses 25% of the cases; therefore, to minimize the frequency of false negative results we recommend the use of a confirmatory test, such as CBA, in patients suspected to have a SCLC-related PNS

    Quantitative muscle MRI to follow up late onset Pompe patients : a prospective study

    Get PDF
    Late onset Pompe disease (LOPD) is a slow, progressive disorder characterized by skeletal and respiratory muscle weakness. Enzyme replacement therapy (ERT) slows down the progression of muscle symptoms. Reliable biomarkers are needed to follow up ERT-treated and asymptomatic LOPD patients in clinical practice. In this study, 32 LOPD patients (22 symptomatic and 10 asymptomatic) underwent muscle MRI using 3-point Dixon and were evaluated at the time of the MRI with several motor function tests and patient-reported outcome measures, and again after one year. Muscle MRI showed a significant increase of 1.7% in the fat content of the thigh muscles in symptomatic LOPD patients. In contrast, there were no noteworthy differences between muscle function tests in the same period of time. We did not observe any significant changes either in muscle MRI or in muscle function tests in asymptomatic patients over the year. We conclude that 3-point Dixon muscle MRI is a useful tool for detecting changes in muscle structure in symptomatic LOPD patients and could become part of the current follow-up protocol in daily clinics

    Follow-up of late-onset Pompe disease patients with muscle magnetic resonance imaging reveals increase in fat replacement in skeletal muscles

    Get PDF
    Altres ajuts: This investigation was sponsored by the following grants, one from Sanofi Genzyme and another from the Spanish Ministry of Health, Fondos FEDER-ISCIII. Isabel Illa has received speaker honorarium from Grifols and Sanofi-Genzyme. Jordi DĂ­az-Manera has received speaker honorarium from PTC Therapeutics and Sanofi-Genzyme. The authors of this manuscript certify that they comply with the ethical guidelines for authorship and publishing in the Journal of Cachexia, Sarcopenia, and Muscle.42Late-onset Pompe disease (LOPD) is a genetic disorder characterized by progressive degeneration of the skeletal muscles produced by a deficiency of the enzyme acid alpha-glucosidase. Enzymatic replacement therapy with recombinant human alpha-glucosidase seems to reduce the progression of the disease; although at the moment, it is not completely clear to what extent. Quantitative muscle magnetic resonance imaging (qMRI) is a good biomarker for the follow-up of fat replacement in neuromuscular disorders. The aim of this study was to describe the changes observed in fat replacement in skeletal muscles using qMRI in a cohort of LOPD patients followed prospectively. A total of 36 LOPD patients were seen once every year for 4 years. qMRI, several muscle function tests, spirometry, activities of daily living scales, and quality-of-life scales were performed on each visit. Muscle MRI consisted of two-point Dixon studies of the trunk and thigh muscles. Computer analysis of the images provided the percentage of muscle degenerated and replaced by fat in every muscle (known as fat fraction). Longitudinal analysis of the measures was performed using linear mixed models applying the Greenhouse-Geisser test. We detected a statistically significant and continuous increase in mean thigh fat fraction both in treated (+5.8% in 3 years) and in pre-symptomatic patients (+2.6% in 3years) (Greenhouse-Geisser p < 0.05). As an average, fat fraction increased by 1.9% per year in treated patients, compared with 0.8% in pre-symptomatic patients. Fat fraction significantly increased in every muscle of the thighs. We observed a significant correlation between changes observed in fat fraction in qMRI and changes observed in the results of the muscle function tests performed. Moreover, we identified that muscle performance and mean thigh fat fraction at baseline visit were independent parameters influencing fat fraction progression over 4 years (analysis of covariance, p < 0.05). Our study identifies that skeletal muscle fat fraction continues to increase in patients with LOPD despite the treatment with enzymatic replacement therapy. These results suggest that the process of muscle degeneration is not stopped by the treatment and could impact muscle function over the years. Hereby, we show that fat fraction along with muscle function tests can be considered a good outcome measures for clinical trials in LOPD patients
    • …
    corecore