59 research outputs found

    Формирование ударного импульса в зависимости от исполнения промежуточной полости пневмогидравлического ударного узла

    Get PDF
    С использованием математического моделирования изучено влияние параметров среды промежуточной полости формирователя пневмогидравлического ударного узла на форму и длительность ударного импульса. Показано как, изменяя параметры и конструктивное исполнение формирователя и промежуточной полости, можно увеличивать эффективность удара

    Reactor rate modulation oscillation analysis with two detectors in Double Chooz

    Get PDF
    A θ13 oscillation analysis based on the observed antineutrino rates at the Double Chooz far and near detectors for different reactor power conditions is presented. This approach provides a so far unique simultaneous determination of θ13 and the total background rates without relying on any assumptions on the specific background contributions. The analysis comprises 865 days of data collected in both detectors with at least one reactor in operation. The oscillation results are enhanced by the use of 24.06 days (12.74 days) of reactor-off data in the far (near) detector. The analysis considers the ν¯ e interactions up to a visible energy of 8.5 MeV, using the events at higher energies to build a cosmogenic background model considering fast-neutrons interactions and 9Li decays. The background-model-independent determination of the mixing angle yields sin2(2θ13) = 0.094 ± 0.017, being the best-fit total background rates fully consistent with the cosmogenic background model. A second oscillation analysis is also performed constraining the total background rates to the cosmogenic background estimates. While the central value is not significantly modified due to the consistency between the reactor-off data and the background estimates, the addition of the background model reduces the uncertainty on θ13 to 0.015. Along with the oscillation results, the normalization of the anti-neutrino rate is measured with a precision of 0.86%, reducing the 1.43% uncertainty associated to the expectation. [Figure not available: see fulltext.

    Predicting Customer Behavior using Naive Bayes and Maximum Entropy – Winning the Data-Mining-Cup 2004 –

    No full text
    Abstract: In this work we describe combinations of classifiers using Naive Bayes

    Incorporating Prior Knowledge on Class Probabilities into Local Similarity Measures for Intermodality Image Registration

    No full text
    We present a methodology for incorporating prior knowledge on class probabilities into the registration process. By using knowledge from the imaging modality, pre-segmentations, and/or probabilistic atlases, we construct vectors of class probabilities for each image voxel. By defining new image similarity measures for distribution-valued images, we show how the class probability images can be nonrigidly registered in a variational framework. An experiment on nonrigid registration of MR and CT full-body scans illustrates that the proposed technique outperforms standard mutual information (MI) and normalized mutual information (NMI) based registration techniques when measured in terms of target registration error (TRE) of manually labeled fiducials

    Machine Learning Methods for Automatic Image Colorization

    No full text
    We aim to color greyscale images automatically, without any manual intervention. The color proposition could then be interactively corrected by user-provided color landmarks if necessary. Automatic colorization is nontrivial since there is usually no one-to-one correspondence between color and local texture. The contribution of our framework is that we deal directly with multimodality and estimate, for each pixel of the image to be colored, the probability distribution of all possible colors, instead of choosing the most probable color at the local level. We also predict the expected variation of color at each pixel, thus defining a non-uniform spatial coherency criterion. We then use graph cuts to maximize the probability of the whole colored image at the global level. We work in the L-a-b color space in order to approximate the human perception of distances between colors, and we use machine learning tools to extract as much information as possible from a dataset of colored examples. The resulting algorithm is fast, designed to be more robust to texture noise, and is above all able to deal with ambiguity, in contrary to previous approaches
    corecore