43 research outputs found

    Development of a new mechano-chemical model in boundary lubrication

    Get PDF
    A newly developed tribochemical model based on thermodynamics of interfaces and kinetics of tribochemical reactions is implemented in a contact mechanics simulation and the results are validated against experimental results. The model considers both mechanical and thermal activation of tribochemical reactions instead of former thermal activation theories. The model considers tribofilm removal and is able to capture the tribofilm behaviour during the experiment. The aim of this work is to implement tribochemistry into deterministic modelling of boundary lubrication and study the effect of tribofilms in reducing friction or wear. A new contact mechanics model considering normal and tangential forces in boundary lubrication is developed for two real rough steel surfaces. The model is developed for real tribological systems and is flexible to different laboratory experiments. Tribochemistry (e.g. tribofilm formation and removal) and also mechanical properties are considered in this model. The amount of wear is calculated using a modified Archard’s wear equation accounting for local tribofilm thickness and its mechanical properties. This model can be used for monitoring the tribofilm growth on rough surfaces and also the real time surface roughness as well as changes in the λ ratio. This model enables the observation of in-situ tribofilm thickness and surface coverage and helps in better understanding the real mechanisms of wear

    A Semi-deterministic Wear Model Considering the Effect of Zinc Dialkyl Dithiophosphate Tribofilm

    Get PDF
    Tribochemistry plays a very important role in the behaviour of systems in tribologically loaded contacts under boundary lubrication conditions. Previous works have mainly reported contact mechanics simulations for capturing the boundary lubrication regime, but the real mechanism in which tribofilms reduce wear is still unclear. In this paper, the wear prediction capabilities of a recently published mechanochemical simulation approach (Ghanbarzadeh et al. in Tribol Int, 2014) are tested. The wear model, which involves a time- and spatially dependent coefficient of wear, was tested for two additive concentrations and three temperatures at different times, and the predictions are validated against experimental results. The experiments were conducted using a mini-traction machine in a sliding/rolling condition, and the spacer layer interferometry method was used to measure the tribofilm thickness. Wear measurements have been taken using a white-light interferometry. Good agreement is seen between simulation and experiment in terms of tribofilm thickness and wear depth predictions

    La "casa dei dolii" a Montereale Valcellina

    No full text

    UGRC 12W932-349 Soft Red Winter Wheat

    No full text
    12W932-349 is a soft red winter wheat (Triticum aestivum L.) cultivar registered for Ontario, Canada. It has high grain yield with good pastry quality and is moderately resistant to Fusarium head blight. 12W932-349 is well adapted for the winter wheat growing areas of Ontario.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore