163 research outputs found

    Throat-Clearing Vocalizations in Primary Brain Calcification Syndromes

    Get PDF

    First and Second Order Sensitivity Equation Methods for Value and Shape Parameters

    Get PDF
    Peer reviewed: YesNRC publication: Ye

    Fluid-flow pressure measurements and thermo-fluid characterization of a single loop two-phase passive heat transfer device

    Get PDF
    Abstract A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore

    Modulation of Lysenin’s Memory by Cu\u3csup\u3e2+\u3c/sup\u3e Ions

    Get PDF
    Lysenin is a pore-forming protein extracted from the red earthworm E. fetida, which forms voltage-gated channels in artificial and natural lipid membranes. A prominent feature of the channels is their memory, originating in the conductance hysteresis that occurs during the application of slow oscillatory voltages. In this work, we showed this innate memory was strongly influenced by the addition of small amounts of Cu2+ ions. After Cu2+ addition, the lysenin channels previously closed by an applied voltage showed a stronger preference for the closed state, indicative of major changes in kinetics and equilibrium. However, the physiology behind this shift is still obscure. To fill this gap in our knowledge, we employed electrophysiology measurements to identify the changes in the closing and opening rates of lysenin channels exposed to Cu2+ ions and step voltages. We found Cu2+ simultaneously reduced the closing rates and increased the reopening rates, leading to a more prominent hysteretic behavior and improved memory. These findings may constitute the starting point on investigations of the memory of brainless microorganisms, and potential applications to bioelectronics and development of smart biological switches and nano-valves

    Right at home: living with dementia and multi-morbidities

    Get PDF
    Dementia is recognised as the biggest health crisis of our time in terms of high personal and social costs and wider impact on health and social care systems. Increases in people living with dementia and multimorbidities presents critical challenges for homecare worldwide. Healthcare systems struggle to provide adequate home-care services, delivering limited care restricted to a single-condition focus. This study explored the experiences and expectations of homecare from the multiple perspectives of people living with dementia and multimorbidities and homecare workers providing support. Findings draw from qualitative semi-structured interviews with people with dementia (n=2), their partners (n=2), other partners or family carers (n=6) and homecare workers (n=26). Three themes are identified: (a) the preference for and value of home; (b) inadequate homecare provision and enhanced care-burden; (c) limited training and education. Despite continued calls for homecare investment, the focus on reduction in costs hides key questions and further dialogue required exploring how people with dementia can be supported to live independently and flourish at-home. This study considers these complex experiences and care requirements through the prism of disability and human rights frameworks. This paper concludes with consideration of more recent human social rights debate. We critically discuss what this may mean for people living with dementia and consider the implications for corequisite policy development to optimise available homecare support. Keywords: dementia, multimorbidities, homecare, independent-living, social right

    Fault diagnosis and comparing risk for the steel coil manufacturing process using statistical models for binary data

    Full text link
    [EN] Advanced statistical models can help industry to design more economical and rational investment plans. Fault detection and diagnosis is an important problem in continuous hot dip galvanizing. Increasingly stringent quality requirements in the automotive industry also require ongoing efforts in process control to make processes more robust. Robust methods for estimating the quality of galvanized steel coils are an important tool for the comprehensive monitoring of the performance of the manufacturing process. This study applies different statistical regression models: generalized linear models, generalized additive models and classification trees to estimate the quality of galvanized steel coils on the basis of short time histories. The data, consisting of 48 galvanized steel coils, was divided into sets of conforming and nonconforming coils. Five variables were selected for monitoring the process: steel strip velocity and four bath temperatures. The present paper reports a comparative evaluation of statistical models for binary data using Receiver Operating Characteristic (ROC) curves. A ROC curve is a graph or a technique for visualizing, organizing and selecting classifiers based on their performance. The purpose of this paper is to examine their use in research to obtain the best model to predict defective steel coil probability. In relation to the work of other authors who only propose goodness of fit statistics, we should highlight one distinctive feature of the methodology presented here, which is the possibility of comparing the different models with ROC graphs which are based on model classification performance. Finally, the results are validated by bootstrap procedures.The authors are indebted to the anonymous referees whose suggestions improved the original manuscript. This work was supported by a grant from PAID-06-08 (Programa de Apoyo a la Investigacion y Desarrollo) of the Universitat Politecnica de Valencia.Debón Aucejo, AM.; García-Díaz, JC. (2012). Fault diagnosis and comparing risk for the steel coil manufacturing process using statistical models for binary data. Reliability Engineering and System Safety. 100:102-114. https://doi.org/10.1016/j.ress.2011.12.022S10211410

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function
    corecore