63 research outputs found

    Motor expertise facilitates the accuracy of state extrapolation in perception

    Get PDF
    Ludolph N, Plöger J, Giese MA, Ilg W. Motor expertise facilitates the accuracy of state extrapolation in perception. PLOS ONE. 2017;12(11): e0187666

    Real-time use of audio-biofeedback can improve postural sway in patients with degenerative ataxia

    Get PDF
    Abstract Objective Cerebellar ataxia essentially includes deficient postural control. It remains unclear whether augmented sensory information might help cerebellar patients, as the cerebellum underlies processing of various sensory modalities for postural control. Here, we hypothesized that patients with cerebellar degeneration can still exploit audio‐biofeedback (ABF) of trunk acceleration as a real‐time assistive signal to compensate for deficient postural control. Methods Effects on postural sway during stance were assessed in an ABF intervention group versus a no‐ABF disease control group (23 vs. 17 cerebellar patients) in a clinico‐experimental study. A single‐session ABF paradigm of standing plus short exergaming under ABF was applied. Postural sway with eyes open and eyes closed was quantified prior to ABF, under ABF, and post ABF. Results Postural sway in the eyes closed condition was significantly reduced under ABF. Both benefit of ABF and benefit of vision correlated with the extent of postural sway at baseline, and both types of sensory benefits correlated with each other. Patients with strongest postural sway exhibited reduced postural sway also with eyes open, thus benefitting from both vision and ABF. No changes were observed in the no‐ABF control group. Interpretation Our findings provide proof‐of‐principle evidence that subjects with cerebellar degeneration are still able to integrate additional sensory modalities to compensate for deficient postural control: They can use auditory cues functionally similar to vision in the absence of vision, and additive to vision in the presence of vision (in case of pronounced postural sway). These findings might inform future assistive strategies for cerebellar ataxia

    Overview of the general management of cerebellar disorders

    No full text

    Continuous Motion Morphing

    Get PDF
    We present an extension to a previous morphing method for human motion. It works on motion capture data that is segmented into movement elements. Our new timewarping algorithm accepts time-dependent continuous functions as input for the morphing coefficients without introducing foot sliding. It is designed for creating new natural looking motions from given prototype motions. We employ a zero-moment-point criterion to analyze the physical correctness of the morphed motions

    Motor Training in Degenerative Spinocerebellar Disease: Ataxia-Specific Improvements by Intensive Physiotherapy and Exergames

    No full text
    The cerebellum is essentially involved in movement control and plays a critical role in motor learning. It has remained controversial whether patients with degenerative cerebellar disease benefit from high-intensity coordinative training. Moreover, it remains unclear by which training methods and mechanisms these patients might improve their motor performance. Here, we review evidence from different high-intensity training studies in patients with degenerative spinocerebellar disease. These studies demonstrate that high-intensity coordinative training might lead to a significant benefit in patients with degenerative ataxia. This training might be based either on physiotherapy or on whole-body controlled videogames (“exergames”). The benefit shown in these studies is equal to regaining one or more years of natural disease progression. In addition, first case studies indicate that even subjects with advanced neurodegeneration might benefit from such training programs. For both types of training, the observed clinical improvements are paralleled by recoveries in ataxia-specific dysfunctions (e.g., multijoint coordination and dynamic stability). Importantly, for both types of training, the retention of the effects seems to depend on the frequency and continuity of training. Based on these studies, we here present preliminary recommendations for clinical practice, and articulate open questions that might guide future studies on neurorehabilitation in degenerative spinocerebellar disease
    • 

    corecore