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Nicolas Ludolph1,2*, Jannis Plöger1, Martin A. Giese1, Winfried Ilg1

1 Department of Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical

Brain Research, and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-
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Abstract

Predicting the behavior of objects in the environment is an important requirement to over-

come latencies in the sensorimotor system and realize precise actions in rapid situations.

Internal forward models that were acquired during motor training might not only be used for

efficiently controlling fast motor behavior but also to facilitate extrapolation performance in

purely perceptual tasks. In this study, we investigated whether preceding virtual cart-pole

balancing training facilitates the ability to extrapolate the virtual pole motion. Specifically,

subjects had to report the expected pole orientation after an occlusion of the pole of 900ms

duration. We compared a group of 10 subjects, proficient in performing the virtual cart-pole

balancing task, to 10 naïve subjects without motor experience in cart-pole balancing task.

Our results demonstrate that preceding motor training increases the accuracy of pole move-

ment extrapolation, although extrapolation is not trained explicitly. Additionally, we modelled

subjects’ behaviors and show that the difference in extrapolation performance can be

explained by individual differences in the accuracy of internal forward models. When sub-

jects are provided with feedback about the true orientation of the pole after the occlusion in a

second phase of the experiment, both groups improve rapidly. The results indicate that the

perceptual capability to extrapolate the state of the cart-pole system accurately is implicitly

trained during motor learning. We discuss these results in the context of shared representa-

tions and action-perception transfer.

Introduction

Expert tennis players are able to extrapolate the motion of a tennis ball and return it skillfully

in order to score a point solely based on their present percept. The current consensus is that

internal forward models, which predict the dynamic behavior of the body and objects in the

environment (such as the ball and tennis racket) support the control of movements [1–3].

Especially in fast situations internal forward models seem to be exploited to overcome the

delay of sensory input [4,5] and to predict events [6–9]. Since motor control is inherently

related to the prediction of sensory consequences in order to act optimally, the question arises

whether motor expertise facilitates the process of perceptual state extrapolation when asked to
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explicitly report the state as accurate as possible and how motor expertise determines the accu-

racy of such extrapolations.

In past studies, subjects’ general ability to predict the behavior of objects in order to act pur-

posefully has been investigated using diverse paradigms. For example, La Scaleia et al. [10]

have examined subjects’ ability to intercept partially occluded ball trajectories. Despite the

occlusion, subjects were able to intercept the ball with high accuracy. In another paradigm sub-

jects predictively control objects with internal degrees of freedom [11], such as mass-spring-

damper objects [12], a virtual cup of coffee [13] or the cart-pole system [14]. Predicting the

behavior of these objects is non-trivial, because all exhibit a high degree of complexity. In this

context, Mehta and Schaal [14] examined subjects while controlling the cart-pole system [15]

with the goal to balance the pole (cart-pole balancing task) under different conditions of visual

feedback. They compared subjects’ actions under full visual feedback to actions during short

occlusions of up to 550 milliseconds. Despite missing visual feedback, subjects’ actions were

indistinguishable from those under full vision. In correspondence with the above-mentioned

studies they concluded, that actions during the occlusion are performed based on an extrapo-

lated state, which replaces the missing visual feedback. In line with this conclusion, we recently

showed in a virtual reality implementation of the cart-pole balancing task that subjects gradu-

ally learn to perform their actions predictively [16], suggesting that subject implicitly extrapo-

late the systems behavior to plan and time the actions in advance. Moreover, if the dynamics

of the system were changed, subjects needed to adapt the action timing to the changes just as it

is known from sensorimotor adaptation paradigms [17]. This suggests that an internal forward

model, which mimics the cart-pole dynamics, is adapted and, furthermore, that it is used to

extrapolate the state during occlusion of the pole in Metha and Schaal’s experiment [14]. Alto-

gether, these studies indicate that motor training alters not only motor control but also affects

mechanisms of sensory processing. However, these studies only provide evidence in favor of

improved state extrapolation capabilities for the purpose of motor control.

Psychophysical studies suggest that internal simulations are also exploited during different

tasks of perceptual motion extrapolation. Graf et al. [18], for example, showed subjects human

actions as point-light movies and asked them to judge whether a static posture, shown after an

occlusion of varying duration, is a plausible succession of the action. The static postures either

matched with the duration of the occlusion or not. They found, that subjects’ responses match

with the internal simulation hypothesis, which predicts that subjects’ error rates depend on the

mismatch of the shown posture and the duration of the occlusion. Since we are all acquainted

with human motion, comparing different levels of motor expertise was not the goal of the

study but the study shows that humans can be very precise in spatial-temporal extrapolation.

Aglioti et al. [19], in comparison, examined how the expertise in playing basketball influences

the ability to judge the success of a free shot. They found that elite basketball players are more

accurate in this task than subjects with similar visual but with much less motor experience

(coaches and sports journalists). While these studies show that internal simulation and motor

expertise influence non-motor related discriminative decisions, it is still an open question

whether motor expertise improves the accuracy in extrapolating the state of the controlled sys-

tem. Predicting the exact state of a complex dynamical system, such as the cart-pole system,

over a certain duration of visual occlusion and reporting it explicitly, is presumably a consider-

ably more challenging task than, for example, only judging the success of a free shot.

In this study, we examined whether prior motor experience facilitates the accuracy in pre-

dicting the state of the cart-pole system not only implicitly for the purpose of control but also

explicitly for reporting the state. We hypothesized that subjects who are able to balance the

cart-pole system are more accurate in extrapolating the pole angle dynamics than subjects

without motor expertise who are at most visually familiar with the cart-pole system.

State-extrapolation is facilitated by motor expertise
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Furthermore, we hypothesized that the reason for the enhanced ability to predict the pole

angle dynamics accurately is that motor experienced subjects possess a more accurate internal

model of the cart-pole system. Specifically, we hypothesized that the time horizon, over which

accurate predictions can be performed, is larger for subjects with motor expertise and fitted

subjects’ responses with a corresponding model. Lastly, we show that subjects without motor

expertise are able to improve in extrapolation performance when provided with feedback

about the true pole angle (correct response). Our results are in line with the hypothesis, that

motor training facilitates perceptual capabilities and, furthermore, suggest that these percep-

tual capabilities are not only implicitly accessible for the purpose of control but also to perform

explicit and accurate state extrapolation when asked to report the state in a perceptual task.

Methods

Subjects

Twenty healthy young participants (age range 18–33 years, mean age 26.1) participated in the

main experiment (Fig 1). All participants gave informed written consent prior to participation.

The study had been approved by the ethical review board of the medical faculty of the Eber-

hard-Karls-University and University Clinics in Tübingen, Germany (AZ 409/2014BO2). Of

the twenty participants, ten subjects participated in a previous experiment in our laboratory,

in which they acquired the cart-pole balancing skill during a training session of 90 minutes,

and were thereby able to control the cart-pole system (skill acquisition). Consequently, these

subjects were assigned to the motor control familiar (MF) group. The average time between

the skill acquisition and the present experiment was 335 days (range: 190–570 days, sd: 125

days). During this time, they did not participate in any other study involving the cart-pole sys-

tem. Thus, they have 90 minutes of experience with the cart-pole system. The remaining ten

subjects (visual familiar group, VF) were naïve regarding the control of the cart-pole system

(without motor expertise). All participants were naïve regarding the goal of this study. Gender

and age have been balanced between groups (mean ±sd: MF 26.3 ±3.2 years, VF 25.9 ±3.5

years). All participants had normal or corrected to normal vision. Subjects were paid 8 Euros

per hour independent of their performance.

Experimental protocol

We examined two groups representing different degrees of motor expertise. In the first group

(motor familiar, MF), subjects had learned to balance the pole on the cart in a previous study

and were therefore familiar with the cart-pole system (with motor expertise). Subjects in the

second group (visual familiar, VF) had no prior exposure to the cart-pole system (without

motor expertise). We familiarized the subjects with the cart-pole system by asking them to

watch and rate balancing attempts of other subjects (visual familiarization).

The experimental protocol consisted overall of three tasks based on the cart-pole system:

(1) extrapolation task, (2) motor control task and (3) visual familiarization task (see following

sections for details). The main task of the experiment was the extrapolation task, in which the

subjects had to extrapolate the motion of the cart-pole system’s pole over 900ms and report the

final orientation (see below). Subjects of both groups performed overall 11 blocks, each con-

sisting of 40 trials, of the cart-pole extrapolation task (Fig 1A). The very first block (block E)

was used to ensure task understanding. The baseline extrapolation performance was assessed

during the second block (block B). Each of the subsequent four blocks (T1-T4) was preceded

by a 5 minutes long block consisting either of the motor control or visual familiarization task

(Fig 1A) depending on the group affiliation. Subjects in the group MF only performed motor

control blocks, in which they had to perform the cart-pole balancing task, while subjects in the

State-extrapolation is facilitated by motor expertise
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group VF only performed visual familiarization blocks, in which they rated balancing attempts

of other subjects. Subsequent to these blocks (T1-T4), participants performed the extrapolation

task for another five blocks (F1-F5). Only during these five blocks (F1-F5) feedback about the

true final pole orientation (correct response) was provided after the subject had responded

(feedback phase, Fig 1B, see below for details). The whole experiment lasted about 90 minutes.

Experimental setup

Visual feedback was provided on a 17 inch monitor (1920x1200px) using the Psychtool-

box [20–22] for MATLAB (The Mathworks, Inc.) at a refresh rate of 60 Hz (Fig 1 and Fig 2).

Subjects’ heads were supported using a chin-rest 60 cm away from the screen. The pole of the

virtual cart-pole system was rendered as a 160 pixels long line, corresponding to about 3cm on

the screen or 2.9˚ in visual space. The cart had a width of 160 pixels. A keyboard for recording

subjects’ responses during the extrapolation and visual familiarization blocks was positioned

between the subject and the monitor. For subjects in the group MF, a SpaceMouse1 Pro

(3Dconnexion) was additionally placed next to the keyboard for controlling the cart-pole sys-

tem in the motor control blocks. The device’s knob can be displaced by ±1.5mm in lateral

direction and exerts a force of 7.4N at full lateral displacement back to the rest position in the

center. The cart-pole dynamics [15] are described by the pole mass (0.08 kg), pole length (1

m), cart mass (0.4 kg) and gravitational constant (3.5 m/s2). We did not simulate friction. The

Fig 1. Cart-pole extrapolation task. (A) Sequence of the blocks and tasks. Subjects in the group VF followed the upper (orange)

path, while subjects in the group MF followed the lower (blue) path. In block E, the extrapolation task was explained. In block B, the

baseline performance was measured. The subsequent four blocks were preceded by a visual familiarization block (orange) or motor

control block (blue). Feedback about the correct response was only provided during the last five blocks (dark gray, F1-F5, see

below). (B) Phases of each trial during the cart-pole extrapolation task. During the observation phase, a red arrow indicated the

direction and magnitude of the force, which was applied during balancing. During the no input phase, the force applied to the cart

was set to zero (see main text) while the pole was still visible. In the prediction phase, the pole was occluded but the dynamical

system was simulated further with the force set to zero. Thus, the cart and (invisible) pole kept moving. Subsequently the time bar

turned red and the subject gave a response (keypress) representing the expected orientation of the pole. The feedback phase

indicated the correct pole angle and was only provided during the last five blocks (F1-F5, see A). RT: response time. (C) Schematic

illustration of the prediction error regarding the pole angle. Notice that an underestimation of the pole movement (blue) corresponds

to a positive error irrespective of the side.

https://doi.org/10.1371/journal.pone.0187666.g001
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knob’s lateral displacement was linearly mapped to a virtual force of up to 4N pushing against

the cart, which is enough force to lift the pole from the maximum simulated angle of ±60

degrees. Like in our previous study [16], we implemented the simulation in MATLAB (The

MathWorks, Inc.) using the 4th-order Runge-Kutta method.

Cart-pole extrapolation task

In the extrapolation task, participants were asked to indicate the expected angle of the pole

after a short occlusion (900ms) during the simulation of the cart-pole system (Fig 1B). Every

trial began with a short sequence (4.5sec) extracted from previous balancing attempts of other

subjects (Fig 1B). The force (magnitude and direction) that was applied by the subject to bal-

ance the pole on the cart was indicated as red arrow. Afterwards the system was simulated over

one second with the input force set to zero. Within this second, the pole was occluded after

100ms for the remaining time of 900ms. Since the input force was zero during this time, there

were neither any discontinuities nor any external sources influencing the systems behavior

even 100ms before the occlusion, making a deterministic extrapolation of the pole dynamics

without additional information possible. To indicate the expected pole angle, subjects had to

choose one of thirteen response options (Fig 1B and 1C), which were evenly distributed over

the pole angle range [-65˚, 65˚] and identified by nearby letters. Each letter corresponds to the

key subjects had to press for choosing the respective response option. Subjects were instructed

to always choose the response option that is closest to the expected pole angle. A time bar (Fig

1B) indicated the time progression within the trial. Subsequent to observing the system’s

movement for overall 5.5 seconds, the time bar turned red which was the sign for the subjects

to respond. In the blocks F1-F5 (Fig 1A), subjects received feedback after having responded,

Fig 2. Motor control and visual familiarization task. (A) Visualization of the cart-pole system for both tasks. In the visual

familiarization blocks the force was indicated as red arrow (like in the extrapolation task). The reward (blue number) that we

presented during the motor control blocks (MF subjects) was not shown during the visual familiarization (VF subjects). We did not

show the arrow during the motor control blocks. (B) The input device, which was used for controlling the system during the motor

control blocks. The knob of the input device can be shifted left and right, which was used to control the virtual force that is applied

to the cart from either side. (C) Phases of each trial during the visual familiarization. During the observation phase, a balancing

attempt was shown that lasted up to 30 seconds. Afterwards, subjects rated the attempt on a scale from one (very bad) to five

(very good). BD: balancing duration, RT: response time.

https://doi.org/10.1371/journal.pone.0187666.g002
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which consisted of the presentation of the true pole orientation. In every block of the extrapo-

lation task, we presented the same 40 stimuli, corresponding to the 40 trials in each block, in

pseudorandom order and recorded subjects’ responses. The stimuli were selected such that the

correct responses were balanced between the left and right side, while additionally covering a

variety of pole angles and angular velocities at the time of occlusion onset.

Familiarization tasks

During the motor control blocks, participants had to balance the virtual cart-pole system (Fig

2A, for details see also [16]). Specifically, they were asked to balance the pole on the cart for a

maximum of 30 seconds without letting the pole fall out of the green arc (±60 degrees) and

without driving off the track (±5 m). They therefore had to apply lateral virtual forces to the

cart, which in turn accelerated the cart. In order to control the force, they used an input device

(SpaceMouse1 Pro, 3Dconnexion) with a lateral degree of freedom in displacement (see

Experimental Setup and Fig 2B). Pushing the knob of this device to the side was translated

into a proportional force into the same direction. Because the device’s position was aligned

with the monitor, the left-right knob movement was in correspondence with the direction of

the virtual force and cart movement on the monitor. Hence, a rightward knob movement

caused a force that pushed the cart to the right. Subjects quickly remembered how to balance

the pole on the cart and therefore rapidly reached high performance (see S1 Appendix).

In the visual familiarization blocks (Fig 2C), participants had to observe balancing attempts

of previously recorded subjects instead of controlling the system themselves. Like in the

extrapolation task, a red arrow indicated the magnitude and direction of the force, which had

been applied during actual balancing. Apart from these arrows, visual information was identi-

cal in both conditions (see S2 Appendix). In order to ensure that participants paid attention to

the balancing performance and to the dynamic behavior of the cart-pole system, they had to

rate every balancing attempt on a scale from one (very bad) to five (very good). Participants

were instructed that the task of the individuals, whose balancing performance was shown, was

to balance the pole on the cart for a maximum of 30 seconds and, that the persons were

rewarded (points) depending on the duration and proficiency of the balancing attempt.

Importantly, the presented attempts during these blocks were different from those shown dur-

ing the extrapolation task. Additionally, instead of only showing short sequences as in the

extrapolation task, the entire balancing attempts were shown, which each lasted up to 30 sec-

onds (duration range: 1.3–30 seconds, 12% of the balancing attempts lasted 30 seconds).

Control experiment

In order to examine whether subjects improved in extrapolation accuracy if the visual familiar-

ization exhibits a similar overall duration as the preceding motor control training of the sub-

jects in the group MF, we performed a control experiment (group extVF). In this condition,

each visual familiarization block (orange blocks in Fig 1A) was 20 minutes long (instead of 5

minutes), providing the participant with an overall interaction time of 80 minutes with the sys-

tem. This is comparable to the duration, which subjects in the group MF needed during the

initial motor training to master the cart-pole balancing task. It turned out that this procedure

was quite cumbersome and annoying for the subjects, not only because of the overall duration

but also because subjects did not improve without receiving feedback (ANOVA which exam-

ined the effect of the blocks B and T1-T4 on the prediction error, within-subject factor block:

p = 0.92). Hence, we only recorded three subjects in this control experiment. Although a statis-

tical comparison between groups is not possible, subjects in this group exhibited a similar aver-

age prediction error (blocks B and T1-T4) as subjects in the group VF (mean ±sd: extVF

State-extrapolation is facilitated by motor expertise
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-14.84˚ ±1.92, VF -14.84˚ ±2.94). We therefore concluded for the further analysis that there is

no difference between repetitively observing and rating balancing attempts in blocks of 5 or 20

minutes duration.

Data analysis

Data preprocessing has be performed in MATLAB (The Mathworks, Inc.). Due to a recording

error, one of the subjects in the group MF had to be excluded, leaving overall 9 subjects in the

group MF and 10 in the group VF. All statistical analyses have been performed in R (v3.3.2)

using the packages lme4 (v1.1), lmerTest (v2.0), phia (v0.2) and nnet (v7.3). Measures have

been examined regarding normality using visual inspection of quartile-quartile plots.

Rating of balancing attempts during visual familiarization. Based on participants’

responses during the visual familiarization blocks, we investigated how the two parameters bal-

ancing duration (BD) and mean absolute pole angle (maPA) influenced the rating. While the

balancing duration is an obvious measure of balancing performance, the mean absolute pole

angle represents how easeful the balancing was performed. The lower the mean absolute pole

angle, the smoother the system was controlled and the more vertical the pole was held

throughout the trial. Notice that the two parameters are correlated in the examined data. How-

ever, there are also successful trials with long balancing duration that exhibit a high mean

absolute pole angle. Similarly, there are short trials with low balancing duration that exhibit a

low mean absolute pole angle. First, we examined the effect of the rating on the two parameters

using a mixed-effects ANOVA. This provides information about the difference between the

rating classes in these parameters. Secondly, we fitted a multinomial log-linear model that

mapped the two parameters (BD, maPA) and their interaction to the rating. Using model com-

parison (likelihood ratio test), we determined the significance of each of the two parameters

(and their interaction) for the rating. Thereby, we revealed that both parameters and their

interaction are influencing the rating of the balancing attempts significantly (see Results).

Pole angle prediction error. The main measure for the accuracy in predicting the pole

angle is the prediction error (Fig 1C). In the extrapolation task, subjects chose in every trial

one of 13 response options corresponding to the orientation where they expected the pole to

be after the occlusion. We defined the prediction error (PE) as the angular difference between

the true pole angle and subject’s response multiplied by the sign of the true pole angle (Eq 1,

Fig 1C).

PE ¼ ðyresp � ytrueÞsignðytrueÞ ð1Þ

Thus, negative errors correspond on both sides to an underestimation of the pole’s down-

wards motion, while positive errors correspond to an overestimation. Statistical examination

of the factors influencing the prediction error was performed using linear mixed-effect ANO-

VAs. In all models, we accounted for individual performance and learning rates by introduc-

ing random effects per subject.

We first examined whether the ability to extrapolate the pole angle improves during the

familiarization phase (B, T1-T4). Since we did not find any improvement (see Results), we

then compared the prediction error between the groups in the blocks T4 (no feedback, but

familiar) and F5 (feedback). These blocks represent different knowledge levels: (T4) subjects

are familiar with the system, but did not receive feedback yet, and (F5) subjects had time to uti-

lize the feedback for improvement. We conducted a mixed-effect ANOVA that examined the

effect of group and feedback on the prediction error in these blocks.

Models of inaccurate state predictions. In attempt to identify the cause for subjects’

inability to predict the pole angle accurately, we investigated whether an inaccuracy of the

State-extrapolation is facilitated by motor expertise
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subjects’ individual internal forward models could account for the difference in observed pre-

diction errors. Specifically, if subjects had a perfect forward model (PERF) of the pole dynam-

ics, the prediction error would be roughly zero (neglecting the discretization error introduced

by the finite number of response options). Simplification of the dynamics, such as assuming

constant pole acceleration (cACC, S3 Appendix) or constant pole velocity (cVEL, S3 Appen-

dix), as it might be appropriate for falling objects depending on whether air-resistance is con-

sidered, introduces a considerable error in the extrapolated pole angle because the actual pole

acceleration depends on the angle. Subjects may also be able to predict the pole movement

accurately only over the first few milliseconds, before they have to switch to a heuristics

because of their limited computational capabilities. As outlined in the introduction, our

hypothesis is that motor expertise facilitates these capabilities, leading to an increased duration

of the interval for which accurate extrapolation is possible (extrapolation horizon). We mod-

elled this behavior by a class of partly heuristic response models, which are described in more

detail in the appendix (lh_cVEL, S3 Appendix). The models simulate the pole dynamics accu-

rately over the first h milliseconds (extrapolation horizon) and then assume constant pole

velocity for the remaining time of the occlusion (900ms—h). We investigated 61 values of the

parameter h, corresponding to the 61 frames (Δt = 1/60s) from 100ms (h = -100ms) before to

900ms (h = 900ms) after the pole occlusion. Notice, that the models for h = 0ms and

h = 900ms coincide with the previously specified models cVEL and PERF. The average predic-

tion error of the models decreases monotonically with increasing h (S3 Appendix). Our inter-

pretation of negative extrapolation horizons is that the respective subject solely relies on the

constant velocity assumption to extrapolate the pole angle and additionally uses a deprecated

estimate of the pole velocity (e.g. derived from 50ms before occlusion), instead of the actual

velocity immediately before the occlusion.

We fitted the parameter h for each subject separately using the individual responses in each

trial of block T4 (see S3 Appendix for details). Notice, that this procedure is different from fit-

ting the model parameter based on the mean prediction errors. After having determined the

best fitting model (h�) for each subject, we compared the groups also based on the parameter

h�. In analogy to the model class lh_cVEL, we also explored the class lh_cACC, which corre-

sponds to assuming constant pole acceleration after first extrapolating the pole angle for h mil-

liseconds accurately. However, the model class lh_cACC was not able to explain subjects’

behavior, because subjects made larger errors than the model could explain for any value of h
between minus 100ms and plus 900ms.

Results

Rating of balancing attempts is influenced by the balancing duration and

mean absolute pole angle

During visual familiarization, every subject in the group VF rated overall 100 balancing

attempts on a scale from one (very bad) to five (very good). In order to verify that subjects did

not respond randomly, but paid attention to the balancing attempts and thereby observed the

cart-pole dynamics, we examined whether the ratings of the subjects were meaningful. Two

salient parameters for rating the balancing attempts are the balancing duration (BD) and the

mean absolute pole angle (maPA).

First, a mixed-effects ANOVA was conducted, for subjects in the group VF, that examined

the effect of rating for the two parameters, BD and maPA (Fig 3A and 3B). We found a signifi-

cant effect of the factor rating for each of the parameters (p<0.001), suggesting that the rating

separated each parameter into distinct classes. Post-hoc test revealed significant pairwise dif-

ferences between all rating classes for BD (p<0.001, Holm corrected). For the maPA, all but
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one (3 vs 4) pairwise difference were significant (p<0.01, Holm corrected). Hence, subjects

used the rating to classify the two performance measures, balancing duration and mean aver-

age pole angle, into ordered, significantly different, and thereby meaningful classes.

The influence of the two parameters (BD, maPA) on the rating was examined using a multi-

nomial log-linear model (see Data Processing and Analysis). Both parameters and their inter-

action contributed significantly to the classification (all p<0.01). Fig 3C shows the predicted

rating of the fitted model as function of the two parameters. Notice that the classification

Fig 3. Analysis of subjects’ ratings during visual familiarization. (A) Balancing duration and (B) average absolute pole angle as

function of subjects’ ratings. Data shown are the averages (bar) ± 1 S.E.M. expressing the between-subject variability. (C) Predicted

rating of the fitted multinomial log-linear model as function of balancing duration and average absolute pole angle fitted to subjects’

responses. The model prediction was sampled uniformly in both dimensions for visualization. Opacity indicates whether training

samples are close. Notice, that the rating (color) depends on both parameters, balancing duration and average absolute pole angle.

*** p<0.001, n.s. p>0.1.

https://doi.org/10.1371/journal.pone.0187666.g003

Fig 4. Average prediction error for both groups. (A) Average prediction error of the motor familiar (MF) and visually familiar (VF)

group across all examined blocks. Negative errors correspond to an underestimation of the pole downwards movement. Notice that

neither of the two groups improves significantly over the blocks B and T1-T4. Feedback is only provided during the blocks F1-F5. (B)

Prediction error of both groups in the blocks T4 (light gray) and F5 (dark gray). Within each group, subjects improve significantly due

to feedback. There is a significant difference between the two groups before feedback was provided (T4). The prediction error is

however not significantly different between groups after feedback was provided (F5). ** p<0.01, *** p<0.001. Error bars indicate ±1

S.E.M. expressing the between-subject variability.

https://doi.org/10.1371/journal.pone.0187666.g004
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depends on both parameters, which is evident by the diagonal boundaries of the classes. While

the balancing duration can easily be interfered at the end of the presented balancing attempt,

inferring the mean absolute pole angle requires a more attentive observation of the trial. Thus,

our results suggest that subjects in the group VF paid attention to the presentation of each bal-

ancing attempt and adhered to a non-trivial set of rules, based on the trial length and mean

absolute pole angle, for classifying the balancing attempts into meaningful classes.

Accuracy in extrapolation does not improve without feedback

For the pole extrapolation task, we first inspected the prediction error across blocks visually.

Subjects of both groups show in average negative errors, which corresponds to a systematic

underestimation of the pole movement (Fig 4A). This suggests that extrapolating the state-

dependent acceleration of the pole is even for motor familiar subjects difficult. Furthermore,

we noticed, that the variability between subjects in the group MF seems to be higher than for

group VF. A possible reason could be a correlation between the extrapolation performance

and the balancing proficiency, which varied between subjects although all motor familiar sub-

jects were able to balance the cart-pole system (see S1 Appendix). However, we did not find

any significant correlation between the average balancing duration in the motor control blocks

and the prediction error in the subsequent extrapolation task block (for all blocks p>0.14,

Spearman’s rank correlation). We did not find any significant correlation between the time

elapsed since initial skill acquisition and the prediction error (for all blocks p>0.4, Spearman’s

rank correlation). Furthermore, the between-subject variability was similar for both groups

over the last blocks (F1-F5).

Before comparing groups, we examined whether there is any improvement in extrapolating

the pole angle across the blocks without feedback (Fig 4A), which would suggest that subjects

improve in pole extrapolation due to the visual familiarization (group VF) or motor control

(group MF) task. Specifically, we conducted for each group a mixed-effects ANVOA that

examined the effect of block on the prediction error over the blocks B and T1-T4. There was

no significant effect of block in any of the groups (MF: p = 0.87, VF: p = 0.95). Hence, the abil-

ity to predict the pole angle does not improve without task specific feedback.

Motor familiar subjects predict the pole angle more accurately

In order to test our hypothesis, that motor familiar subjects show a smaller prediction error

than subjects without motor expertise, we compared the prediction error between the groups

just before any task specific feedback was provided (T4) and at the end of all feedback blocks

(F5). To this end, a mixed-effect ANOVA was conducted that examined the effect of feedback

(see Data Analysis) and group on the prediction error (Fig 4B). Both effects reached signifi-

cance (group: p<0.02, feedback: p<0.001). The interaction did not reach significance

(p = 0.07). Post-hoc tests revealed a significant difference between groups before feedback was

provided (p<0.01, Holm corrected, mean MF: -9.6˚, VF: -14.9˚) but not after (p = 0.22, Holm

corrected, mean MF: -5.2˚, VF: -7.5˚). Post-hoc comparison of the two blocks (T4: no feedback

vs. F5: feedback) revealed a significant improvement within groups (both p<0.001). In sum-

mary, this analysis revealed a significant difference between the groups MF and VF before

task-specific feedback was provided. Thus, motor familiar subjects can predict the pole move-

ment more accurately than subjects can, who have no motor expertise. Subjects in both groups

are however able to utilize the feedback about the correct pole orientation for improvement,

resulting in statistically indistinguishable extrapolation performance in the last block (F5).
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Larger extrapolation horizon accounts for better extrapolation

performance

We also investigated the average prediction error of different response models for extrapolat-

ing the pole angle during the occlusion (see Methods). Visual inspection reveals that, on aver-

age, both groups performed worse than a response model that accurately predicts the pole

movement (PERF) or than assuming constant acceleration (cACC, Fig 5). For a more detailed

analysis, we fitted subjects’ individual responses for every trial in the block T4 using our model

class lh_cVEL, which extrapolates the state over the first h milliseconds (extrapolation horizon)

accurately and then assumes constant pole velocity for the remaining time of the occlusion

(see Methods and S3 Appendix). This model mimics the potentially limited capability to pre-

dict accurately over longer periods. Notice that the average prediction error of the model with

h set to the average (or median) h� of one group deviates from the average prediction error of

the corresponding group. This is because individual responses are fitted and not the group

average (or median). In comparison to the subjects in the group VF, the behavior of the sub-

jects in the group MF was described by a significantly larger extrapolation horizon (parameter

h�, Fig 6, p = 0.026, Wilcoxon rank sum test, median MF: 183.33ms, VF: 16.66ms). Thus, the

subjects in the group MF seem to possess a more accurate, although not perfect, internal repre-

sentation of the pole dynamics, which accounts better for the angle-depended acceleration of

the pole.

Discussion

We compared human’s ability to extrapolate the pole angle of the cart-pole system between

subjects with and without motor expertise in the cart-pole balancing task. Subjects without

motor expertise rated balancing attempts of other subjects (visual familiarization) in dedicated

blocks during the experiment, while motor familiar subjects instead performed again the bal-

ancing task during this time as they have done previously during skill acquisition. During the

extrapolation task, subjects observed balancing attempts and indicated for each attempt where

they expected the pole to be after the pole was occluded for 900ms. Our analysis has revealed

that neither of the two groups improves without receiving feedback about the true pole angle

(Fig 4). Subjects with motor expertise were, however, even before receiving feedback signifi-

cantly more accurate in extrapolating the pole angle, although both groups received similar

visual information during the visual familiarization and motor control blocks. We examined

and explained the higher accuracy of motor familiar subjects in terms of exploiting a more

accurate model of the pole dynamics, especially regarding the influence of the angle dependent

gravitational acceleration of the pole and the ability to extrapolate this influence over a long

duration accurately (extrapolation horizon, Fig 5). Subjects of both groups improved signifi-

cantly in terms of minimizing the prediction error by using the feedback about the true pole

angle in the last phase of the experiment (F1-F5). Finally, at the end of the experiment (F5), the

extrapolation performance of the two groups was statistically indistinguishable.

La Scaleia et al. [10] argued that subjects incorporate prior experiences about gravity and

air drag when intercepting ball trajectories in the form of model-based control. Since we are all

used to the motion and behavior of objects during free fall, we already possess the knowledge

that is necessary to catch falling objects. Similarly, we are used to human motion in the sense

that we are able to interpret and extrapolate it [18]. It is important to note, that we usually

acquire this ability and the corresponding knowledge implicitly and only rarely use it explic-

itly, meaning we use it for performing actions instead of expressing our expectations verbally.

Nevertheless, subjects were able to discriminate plausible from implausible future body pos-

tures and to report their decisions [18]. Although the way subjects responded in the two
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studies differed substantially (actual catching vs. binary discrimination), the concept of inter-

nal simulation of the motion plays a central role for both studies in explaining subjects’ perfor-

mances. These internal simulations of motion and the corresponding neural representations

are arguably formed already during our childhood as result of throwing and catching balls,

observing other people move as well as moving ourselves. During the training of specific tasks,

such as playing basketball, these internal simulations are refined and specialized, which

enables, for example, elite basketball players to outperform less experienced individuals in

Fig 5. Average prediction errors for the investigated response models. In addition to the average prediction error for each

model, the average prediction errors of subjects in the groups MF (light blue) and VF (orange) are shown for visual comparison.

The three highlighted models (red: PERF, magenta: cACC, blue: cVEL) correspond to common assumptions in model-based

extrapolation of motion (perfect model, constant acceleration and constant velocity). The average prediction error of each

model in the class of partly heuristic forward models (lh_cVEL) is plotted as gray line, where h denotes the extrapolation horizon

of the model. Notice that h = 0ms and h = 900ms coincide with the models cVEL and PERF. The model cACC is not in the class

lh_cVEL.

https://doi.org/10.1371/journal.pone.0187666.g005

Fig 6. Comparison of the two groups based on the model lh_cVEL and parameter h*. Inter-quartile

range (box) and median (dot) of the fitted h* for the motor familiar (MF) and visually familiar (VF) subjects in

block T4. The median h* for subjects in the group MF is significantly higher and therefore closer to the perfect

model (h = 900ms).

https://doi.org/10.1371/journal.pone.0187666.g006
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predicting the binary outcome of free shots [19]. Similarly, subjects with motor expertise in

the virtual cart-pole balancing task were in our experiment more accurate in predicting the

pole angle than subjects without motor expertise. However, in comparison to Aglioti et al.’s

experiment, the most important difference is that the cart-pole extrapolation task required

subjects to indicate the expected pole angle as accurately as possible instead of making only

binary decisions (outcome of free shot). Thus, the underlying internal simulation has to fulfil

substantially more restrictive accuracy requirements. In other words, the extrapolation of the

pole angle has to be very accurate (and precise) in order to be able to discriminate between the

diverse response options reliably. According to the internal simulation hypothesis [23], the

accuracy of the extrapolation is determined by the accuracy of the internal forward model that

represents the cart-pole system. We found that the responses of subjects with motor expertise

were more similar to those of a perfect model than the responses of subjects without motor

expertise (larger extrapolation horizon, Fig 6). Thus, motor familiar subjects seem to have

used a more accurate model for extrapolation. However, we also found that even motor famil-

iar subjects were not able to extrapolate the motion without flaws. In fact, our model-based

analysis suggested that subjects only extrapolated for about 183ms accurately (group MF in

block T4, Fig 6) before they switched to the constant velocity assumption. Similarly, Mehta

and Schaal [14] reported that subjects show an average visuomotor delay of 269ms during vir-

tual pole balancing and that trained subjects can tolerate occlusions of 500-600ms duration

without losing balance. Regarding the last point, it should however be noted that balancing the

pole might be possible without being able to extrapolate the pole movement perfectly over the

whole duration of the occlusion. In fact, since small mistakes during balancing can, to a certain

degree, be corrected for later, subjects might acquiesce imperfections in order to reduce the

effort for extrapolating more accurately. Nevertheless, when being confronted with the error

in the extrapolation task by receiving feedback about the true pole angle, subjects used the

additional task specific information to improve in the extrapolation task.

Intriguingly, motor familiar subjects could not only use the forward model, which they

acquired during motor training, for performing actions predictively [16] but also to extrapo-

late and report the state of the system accurately, suggesting that information between action

and perception is shared. Hecht et al. [24] have investigated the transfer of information and

the relation between acting and perceiving in more detail. In their experiment subjects either

had to rate (perceptual task) or perform (motor task) two subsequent movements that exhib-

ited a certain relative timing. By permuting the sequence of tasks across groups, they investi-

gated the transfer of knowledge from action to perception (action-perception transfer, APT)

and vice versa (perception-action transfer, PAT). In comparison to a control group, both test

groups were better in the second task, suggesting that information is transferred in both direc-

tions. Another interpretation is that for the perceptual and motor tasks the same representa-

tion is used and thereby the information is shared [25,26].

Recent research in the field of sensorimotor control addressed the topic of shared represen-

tations for action and perception from a slightly different perspective. Instead of acquiring a

new motor skill, researchers investigated how the adaptation of motor behavior influences the

perception. Sensorimotor adaptation is commonly explained by the adaptation of internal for-

ward models that map actions to their sensory consequences. By minimizing the sensory pre-

diction error (difference between predicted and actual outcome), predictions about the

sensory consequences of actions are maintained accurate [27]. When the sensory conse-

quences are artificially biased, for example due to a visuomotor rotation in virtual reality

[27,28], the sensorimotor map is perturbed. Intriguingly, after having adapted to such pertur-

bation as result of the minimization of the sensory prediction error, not only the subsequent

motor execution is biased but also the perceived sensory consequences are biased in
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comparison to reality. Indeed, for classical visuomotor rotation paradigms, it has been shown

that healthy subjects perceive their hand at a different position after sensorimotor adaptation

and that the perceived hand position corresponds to the visuomotor rotation [29]. These stud-

ies suggest that extrapolation mechanisms for motor control and perception are not only

tightly related but might also share the same internal forward models. Regarding the neural

correlates of this behavioral finding, Synofzik et al. [29] have shown that not only the adapta-

tion of motor behavior [17] but that also the shift in perception depends on the integrity of the

cerebellum. Especially the posterior-lateral cerebellum seems to be important not only for the

planning of motor actions [17,30] but also for the perception of action [31,32] and sensory pre-

diction [5–9,33,34]. It seems therefore plausible that the cerebellum implements mechanisms,

which are equally used for perception and action. Whether the cerebellum and other brain

areas, such as the parietal lobe [35–39], are involved in the cart-pole balancing and extrapola-

tion tasks, and whether there are different neural correlates depending on the preceding type

of training (visual vs. motor), is an interesting direction for future research.

Limitations of the study

Finally, we would like to address some limitations of this study and elaborate why these limita-

tions do not contradict our conclusions. First, motor familiar subjects interacted overall for a

longer duration with the cart-pole system due to the prior skill acquisition that lasted 90 min-

utes. For acquiring the cart-pole balancing skill, vision is essential. Thus, motor familiar sub-

jects were presumably also visually more familiar with the dynamics of the cart-pole system.

This consideration limits the interpretability of our data in terms of the difference between

visual and motor familiarity. However, our main hypothesis was that subjects with motor

expertise (in terms of being able to balance the pole on the cart) could extrapolate the pole

motion more accurately than subjects without motor expertise. The visual familiarization that

we provided could only have reduced (if at all) the found contrast between the motor experi-

enced and unexperienced group.

Second, our visual familiarization task consisted of observing and rating balancing attempts

of others. Observing and rating balancing attempts might be a less engaging task in terms of

acquiring detailed knowledge about the system dynamics than actively balancing the cart-pole

system. However, the blocks of visual familiarization and extrapolation tasks were alternated

(T1-T4, see Fig 1A), which provided the subjects with the opportunity to extract specific infor-

mation about the system dynamics from a visual familiarization block and use it in the next

extrapolation block. Since subjects were asked to perform in the extrapolation task as good as

possible, they also had the incentive to exploit the order of the tasks in this way and to be more

engaged during the visual familiarization blocks. Thus, it is hard to judge whether there was a

difference in engagement to learn about the dynamics between the two groups. Nevertheless,

our conclusion that motor experienced subjects can extrapolate the pole motion more accu-

rately than motor unexperienced subjects is not contradicted or limited by this consideration.

Third, we investigated the difference in pole extrapolation accuracy between motor experi-

enced and unexperienced subjects only in a virtual reality task. There is a considerable differ-

ence between performing a task in virtual reality or real-life, especially when the task requires

to control, observe or predict the behavior of a dynamic system that is simulated with limited

temporal resolution and represents only a model of a real system. Thus, although we motivated

the topic more generally in the introduction, we can only draw conclusions about human

behavior in this virtual reality task.

In summary, none of these limitations invalidates or contradicts our main hypothesis,

which is that motor expertise in performing the cart-pole balancing task facilitates the accuracy
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of extrapolating the pole movement in virtual reality. Furthermore, our results are in line with

other studies, which revealed a general behavioral difference between visual or motor familiar

subjects [19,24]. We add to these reports by showing that the differences in extrapolation per-

formance between motor experienced and unexperienced subjects are very specific. Our

model-driven analysis additionally characterizes the individual extrapolation performances

and explains the resulting difference between the groups in terms of a limited extrapolation

horizon.

Conclusions and outlook

In conclusion, we have shown that motor training does not only improve motor control but

also specific task-relevant perceptual abilities in a virtual reality task. Being able to extrapolate

the state of the virtual cart-pole system into the future is an important ability for easeful bal-

ancing performance. Correspondingly, subjects who had previously learned to control the vir-

tual cart-pole system were more accurate in extrapolating the pole movement than subjects

who had no motor expertise in the cart-pole balancing task. Our results suggest that motor

training yields an accurate, although not perfect, internal forward model of the controlled

dynamics, which can be used for both, controlling and accurately extrapolating the dynamic

behavior of the cart-pole system. Similar extrapolation accuracy can, however, also be achieved

without motor training by minimizing the extrapolation error when task-specific feedback is

provided.

Our study motivates multiple future research directions. First, since our model explained

the difference in extrapolation performance based on the duration of accurate internal simula-

tion, a future study could test this prediction explicitly by varying the duration of the occlu-

sion. Secondly, with the acquired data we could only investigate the accuracy of the

extrapolation mechanism. Evaluating the variability of subjects’ responses within the blocks

would provide valuable insights about the confidence and precision of the extrapolation.

Another interesting question, inspired by Hecht et al. [24], is to investigate whether the ability

to extrapolate the pole movement (even more) accurately after performing the pole extrapola-

tion task, improves the cart-pole balancing skill or facilitates its acquisition (perception-action

transfer). Moreover, investigating the transfer of acquired knowledge in the virtual cart-pole

balancing task to a corresponding real life task is another interesting topic not only for basic

neuroscience research but also for the training of professional skills (see also [40]). Finally,

identifying and comparing the neural correlates corresponding to virtual cart-pole balancing

and extrapolating the pole movement might foster the understanding of knowledge represen-

tations in the brain.
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Data curation: Nicolas Ludolph, Jannis Plöger.
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