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Figure 1. Rendering of a morphed Karate Kata.

Abstract

We present an extension to a previous morphing method for human motion. It works on motion capture data
that is segmented into movement elements. Our new timewarping algorithm accepts time-dependent continuous
functions as input for the morphing coefficients without introducing foot sliding. It is designed for creating new
natural looking motions from given prototype motions. We employ a zero-moment-point criterion to analyze the
physical correctness of the morphed motions.
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1. Introduction

In the recent years, the need for the entertainment
industry to generate realistic looking virtual characters
became more and more obvious. The rendering qual-
ity in animated films and computer games improved
steadily, but the naturalness of the character motion
could not yet satisfy the human perception. As the
human idea of natural motion is heavily trained by ev-
eryday impressions of real human and animal move-
ments, it can hardly be tricked by artificially created
movements. Even if a simulated motion is physically
correct, it often appears unnatural and robot-like.

Today, basically three different methods are em-
ployed for computer assisted motion generation:
keyframe editing, physics based simulation, and mo-
tion capture. The first one, keyframe editing, demands
great skill and experience on the animator. Addition-
ally, as with the second method, it is also difficult to
add all the dynamic expressions in the upper frequency
domain that play an important role in natural motion.
Another difficulty in physics based simulation is the
tuning of the simulation until the desired movements
are achieved, because the result of the simulation can
only be controlled indirectly. The last method, motion
capture, became favorable when infrared cameras and
computer hardware were able to provide the required
performance to capture and process 3D marker motion
at sufficient temporal and spatial resolution. With mo-
tion capture, all important details of the movements
are preserved, but every single motion sequence has
to be captured separately and cleaned from artifacts,
which is a time consuming and expensive process.

Hence, for the generation of realistic movements, we
aim at the reuse of motion capture data to synthesize
new motions that hold the physical and natural cor-
rectness of the captured motion examples. We first
give an overview of related work from the past years.
A brief introduction to morphable models for motion
follows in Section 3. In Section 4, the new method for
continuous morphing is presented. Finally, in Section 5
we compare the correctness of the zero-moment-point
with the previous method.

2. Related Work

Physics based methods early became popular to im-
prove keyframe animations. The artist specifies key
poses or actions to be performed (”spacetime con-
straints”), and the system searches for matching move-
ments that satisfy Newton’s laws based on the bound-
ary conditions [WK88, Gle97, FvdPT01, FP03]. In
particular, the zero-moment-point (ZMP, the point

where all moments acting on the body cancel out
each other) is useful to determine correct motions
[TSK00, SKG03, TK03].

Motion blending helps to combine existing motions
into new, intermediate motions using linear [BW95,
WP95, GP99] or radial [RCB98] basis functions. In or-
der to interpolate joint rotations, the rotations are lin-
earized [Gra98, LS02] and end-effector positions have
to be ensured by inverse kinematics [PSS02]. Ko-
var and Gleicher [KG03, KG04] introduced registration
curves to align the coordinate frames of the input mo-
tions before the actual morph.

Giese and Ilg introduced hierarchical movement cor-
respondences in order to identify movement primi-
tives [IG02] and to synthesize human motion sequences
[GKB02]. Several authors propose methods to gen-
erate long motions from short sequences by concate-
nation, either by learning methods [LWS02] or by
searching appropriate transitions in a motion database
[KGP02, CLS03, AFO03].

In this work, we try to optimize the morphing pro-
cess itself with the objective of generating realistic, nat-
ural motion.

3. Morphable Models for Motion

First we give a brief introduction to the idea of mo-
tion correspondence, combinations of motions and hi-
erarchical models as described by Giese et al. [GP99,
GKB02]. As motion capture anyway acquires only a
part of the body’s degrees of freedom, any further di-
mension reduction or working in the frequency domain
removes even more important details from the input
motions. Therefore, the morphable models work on
motion capture data in spatial domain.

3.1. Motion Correspondence

We define the trajectory xp of a prototypical motion
in relation to a reference trajectory xr at time t as

R → RN : xp(t) = xr(t + Tp(t)) + Xp(t) (1)

with temporal displacements Tp ∈ R and spatial dis-
placements Xp ∈ Rn. The trajectories are given as N
time-dependent values and describe variable parame-
ters of a motion like marker coordinates and joint ro-
tation angles. The displacements give the correspon-
dence of two motions and are not unique.

We call the motion correspondence good if the func-
tion g(t) = t + Tp(t) is monotonic and the norms |Tp|
and |Xp| are small. If the prototype and the reference
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motion are identical, Tp and Xp should be zero. The
more the two motions differ, the higher the amplitude
of the displacement fields will be. Optimal displace-
ments can be found by solving a constrained optimiza-
tion problem [BW95] that minimizes the energy func-
tion

E =
∫ [

|Xp(t)|2 + λ Tp(t)2
]
dt (2)

with a constant λ that controls the trade-off between
optimal time-alignment and optimal spatial proximity.

3.2. Motion Combination

Having several prototypical motions that are
mapped to a single reference motion by good corre-
spondence, we can express the trajectories of new mo-
tions as linear combinations of the displacement fields.
The new displacements are the weighted sums

X(t) =
N∑

p=1

wpXp(t) and T (t) =
N∑

p=1

wpTp(t)

with weights wp ∈ R. For character motion, typically
only convex combinations are used. As the prototypes,
also the new motion is now defined by Equation (1) in
terms of the reference motion, which gives

x(t) = xr(t + T (t)) + X(t)

= xr(t +
N∑

p=1

wpTp(t)) +
N∑

p=1

wpXp(t). (3)

The reference motion xr can be chosen as the average
of all input motions.

3.3. Hierarchical Morphable Models

The morphable model so far is limited to only short
movement sequences, since the minimization of Equa-
tion (2) for discretized motions has quadratic complex-
ity in the number of time-steps. Furthermore, it makes
sense to split long movement sequences into smaller
ones that can be handled separately in order to achieve
more flexibility in the reuse of the motion.

For this reason, Giese and Ilg introduced the hi-
erarchical spatio-temporal morphable models, HSTMM
[GKB02, IG02], that morph individual movement ele-
ments of a decomposed motion according to the follow-
ing steps:

1) Decomposition Each motion xp(t) is split into
M time intervals

Jp,i = [tp,i, tp,(i+1)], i = 0 . . .M − 1.

This decomposition is performed manually or automat-
ically, e.g. based on local minima of the velocities.

2) Normalization Each motion segment is resam-
pled to τ time-steps. Afterwards, each segment xp,i is
transformed by a linear function that zeroes the tra-
jectories at the segment borders, giving the normalized
trajectories

x̃p,i(t) = xp,i(t)− xp(ti)
− t/τ (xp(ti+1)− xp(ti)),

t ∈ [0, τ ].
(4)

3) Correspondences For each normalized move-
ment element, the energy function (2) is minimized
separately, which turns the non-hierarchical complex-
ity O(tM 2) for discretized motions into O(M · τ2).

These first three steps are independent from the morph
weights and need to be computed only once as long as
the prototype motions do not change.

4) Linear combination The normalized trajecto-
ries now can be morphed separately for each segment
with Equation (3). To be able to reverse the linear
transformation in step (5), also the segment transition
points and the new segment lengths are combined by
weighted sums.

5) Concatenation Using the new transition points
and segment lengths, the normalization is reversed and
the global coordinates are obtained. It has to be en-
sured that the transitions are continuous, which is
problematic if different weights are used for the motion
segments. The approach depicted in the next section
resolves this problem.

4. Continuous Motion Morphing

The application for the morphable models originally
was not motion synthesis, but analysis: If an unknown
motion can be represented as a combination of example
motions, the weights of the particular examples give
information about the kind of the motion. This feature
is successfully exploited to estimate skill-levels in sports
[IMG03]. Moreover, movements can be transferred to
robots by means of imitation learning [IBMG04].

However, for generating naturally looking charac-
ter animation, the discontinuous morphing weights are
visually not acceptable because of foot-sliding. As a
solution we introduce smooth weights.
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4.1. Smooth Weights

Replacing the constant weights wp in Equation (3)
by time-dependent weights wp(t), the motion can be
morphed continuously between the prototypes. Unfor-
tunately, this approach causes foot-sliding when the
prototypes are spatially distant. The reason is that
the weight change induces an acceleration to the tra-
jectories that depends linearly on the displacement field
amplitudes.

For illustration, let the temporal displacements
T 0

p (t) be zero, which means that all movements of the
prototypes have the same timing. Under this assump-
tion, applying the product rule on Equation (3) we get
for the velocity dx

dt of the morphed trajectories

ẋ0(t) = ẋr(t) +
N∑

p=1

[
ẇp(t)Xp(t) + wp(t)Ẋp(t)

]
.

With the term ẇp(t)Xp(t) the velocity depends on
the weight change rates at time t. However, we would
expect the correct velocity ẋ0

c to be only dependent on
the current weights,

ẋ0
c(t) = ẋr(t) +

N∑
p=1

wp(t)Ẋp(t),

or with any Tp(t),

ẋc(t) = ẋr(t +
N∑

p=1

wp(t)Tp(t)) +
N∑

p=1

wp(t)Ẋp(t). (5)

Integration of the modified velocity ẋc yields the cor-
rect trajectories

xc(t) =
∫ t

t0

ẋc(u)du + xs

= xr(t + T (t)) + Xc(t) + xs

with the modified spatial displacements

Xc(t) =
∫ t

t0

N∑
p=1

wp(u)Ẋp(u) du (6)

and the starting point

xs =
N∑

p=1

wp(t0)Xp(t0) ∈ RN .

Hence, the correct morph is obtained by first differ-
entiating the spatial displacements, then timewarping
the velocities, and finally integrating. Figure 2 shows
a simple scheme for the new morphing method.

For Equation (6), the velocity field

Ẋc(t) =
N∑

p=1

wp(t)Ẋp(t)

is needed. Using convex weights, the computation can
be further simplified. Instead of actually storing the
relative velocities Ẋp(t) of the prototypes to the refer-
ence,

Ẋp(t) =
d

dt
(xp(t)− xr(t)) ,

we may rewrite Equation (5) as

ˆ̇xc(t) = ẋr(t + T (t))
+

∑N
p=1 [wp(t) · (ẋp(t)− ẋr(t))]

= ẋr(t + T (t))− ẋr(t)
+

∑N
p=1 wp(t)ẋp(t)

with
∑N

p=1 wp(t) = 1.

(7)

Hence, with convex weights the timewarping can be
performed immediately on the input velocities. If ad-
ditionally the timewarping is disabled (Tp ≡ 0), the
computation simplifies to a trivial integration of the
input velocities.

4.2. Continuously Morphable Models

In order to be able to use the hierarchical morphable
models of Section 3 for computing the correct morph
xc(t), they are modified the following way.

1) Decomposition The splitting of the prototype
motions into M time intervals is performed as before.
From now on we will call the trajectory segments ”po-
sitions” to be able to distinguish from the velocities.

2) Normalization and Differentiation The posi-
tions are resampled to τ time-steps per segment. Thus,
we get (τ − 1) velocity samples as differences from the
positions. Afterwards, the normalization is applied to
the positions.

3) Correspondences The displacements are calcu-
lated as usual based on the normalized positions.

4) Linear combination and Integration The
starting point xs is computed, and for each segment,
the segment lengths and the velocities are linearly
combined. Starting from xs, the velocities are summed
up over all segments and timewarped.
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Figure 2. Continuous morphing scheme.

5) Concatenation Finally, the segments are re-
sampled to the correct length. The concatenation of
the segments is automatically continuous if the weight
functions are.

It turns out that this simple time-integration does not
produce noticeable errors even for considerably long se-
quences of 30 seconds and more. In our experiments
we used τ = 200 samples for movement elements of up
to ten seconds in length. Linear interpolation of the
samples is sufficient for the re-sampling during normal-
ization, timewarping and concatenation.

4.3. Linearized Rotations

The continuous morphing is not limited to positional
trajectories, but can be applied to any motion param-
eters that can be linearly combined. In order to morph
the joint rotations of skeleton hierarchies, we employ
an exponential mapping of R3 to the unit quaternion
space S3 and the rotation matrices SO(3) according
to [Gra98]. Spherical linear quaternion interpolation
(slerp) would limit the morphing to only two proto-
type motions.

The logarithm of the unit quaternion (v, w) is de-
fined as

S3 → R3 : log(v, w) =
{

(0, 0, 0)T , |v| = 0
2 arccos(w) · v/|v|, |v| > 0,

which corresponds to a rotation around the axis v by
the angle α,

α = (2zπ + 2 arccos(w)), z ∈ Z.

Since this mapping is not unique, at each time-step
we pick the α that minimizes the angular difference
between the joint rotations.

5. Validation of Morphs

While it is rather easy for a human observer to quan-
tify the correctness and naturalness, it is comparably
difficult to define a quality measure for morphed mo-
tions.

5.1. Zero-moment-point

Figure 3. ZMP and support polygon (ma-
genta) compared to the center of mass (green
trajectory).

One possibility is to validate Newton’s Laws for an
approximated mass distribution on the character. We
restrict to the case where the character is in non-sliding
contact with the environment. In this case, forces that
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affect the motion of the character have to act on the
contact points. For a physically correct walking mo-
tion, this means that the zero-moment-point (ZMP)
always stays inside the support polygon of the feet on
the ground, otherwise the law of action and reaction
would be violated. When the character is in rest, the
ZMP is identical with the projection of the center of
mass onto the ground. However, whether the character
is balanced or not, or even falls, the ZMP will always
stay inside the support polygon. For this reason, the
ZMP is a good measure to proof a physically incorrect
motion during the support-phases.

5.2. Results

In our experiments, we use the mass distribution
and formulas given in [TSK00] to calculate the ZMP.
Figure 3 shows the ZMP (magenta ball) for a frame
where the character stops its motion with the right leg
after a jump. The trajectory of the center of mass
(green dots) is given for comparison. During the flight
phase, the ZMP was meaningless (magenta lines).

The distance of the ZMP to the support polygon for
two Karate captures is depicted in Figure 4. The mo-
tions were captured at 120Hz from a beginner and a
master in Karate. Figure 5 shows the distance of the
ZMP for a morph between the two captures. The result
of the previous model (HSTMM, dotted line) is plotted
against the result of the new continuous model. Dur-
ing the morph, the weight coefficients change linearly
from the beginner to the master. For the ZMP com-
putation, the character height is assumed to be 1.75m
and the weight 79kg, which is close to the actual mea-
sures of the two captured persons. Figure 6 shows some
pictures of the generated morph.

As the calculation of the ZMP involves the calcu-
lation of accelerations, any noise in the trajectories is
amplified. Therefore, we have to apply low-pass fil-
ters before each differentiation. The noise generally is
higher at the end of the morph, as the better karateka
moves faster. On the one hand, the difference between
the two curves is only minimal, which reveals that, with
the ZMP, it is impossible to quantify the foot-sliding
caused by the HSTMM.

On the other hand, it shows that the continuous
model does not significantly increase the noise or de-
teriorate the physical correctness otherwise. Note that
the input motions already show a rather bad ZMP tra-
jectory (Figure 4), and naturally the morphed motion
cannot achieve a better ZMP quality.

6. Conclusions

Our approach for continuous motion morphing ex-
tends the hierarchical morphable models by arbitrary
blending weights. The generated motion inherits the
continuity of the input trajectories and the user-defined
weight function. Consequently, the flexibility and the
wide range of applications of the models are extended
by the advantage of being able to create naturally look-
ing motions for Computer Graphics needs.

We applied the new models to long Karate motions
that pose a hard challenge to morphing algorithms
since they contain a wide dynamic range of movements,
and showed, that the ZMP trajectory is not adversely
affected by the new timewarping method.

One drawback of morphable models is that the space
of producible motions is strongly limited by the range
of the prototype motions. Therefore, motion databases
still have to be provided for applications in Computer
Animation. Another drawback is that the linear com-
bination smoothes out more details the more prototype
motions are used. A modified combination method
would be needed to save specific details of one pro-
totype while it is combined with several other ones.
However, the physical and natural correctness of the
generated motion then could not be ensured anymore.
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