7 research outputs found

    Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California.

    Get PDF
    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature - collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate - particularly precipitation and water availability - is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local-scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study

    Effective monitoring of freshwater fish

    Get PDF
    Freshwater ecosystems constitute only a small fraction of the planet’s water resources, yet support much of its diversity, with freshwater fish accounting for more species than birds, mammals, amphibians, or reptiles. Fresh waters are, however, particularly vulnerable to anthropogenic impacts, including habitat loss, climate and land use change, nutrient enrichment, and biological invasions. This environmental degradation, combined with unprecedented rates of biodiversity change, highlights the importance of robust and replicable programmes to monitor freshwater fish assemblages. Such monitoring programmes can have diverse aims, including confirming the presence of a single species (e.g. early detection of alien species), tracking changes in the abundance of threatened species, or documenting long-term temporal changes in entire communities. Irrespective of their motivation, monitoring programmes are only fit for purpose if they have clearly articulated aims and collect data that can meet those aims. This review, therefore, highlights the importance of identifying the key aims in monitoring programmes, and outlines the different methods of sampling freshwater fish that can be used to meet these aims. We emphasise that investigators must address issues around sampling design, statistical power, species’ detectability, taxonomy, and ethics in their monitoring programmes. Additionally, programmes must ensure that high-quality monitoring data are properly curated and deposited in repositories that will endure. Through fostering improved practice in freshwater fish monitoring, this review aims to help programmes improve understanding of the processes that shape the Earth's freshwater ecosystems, and help protect these systems in face of rapid environmental change

    Determining productivity of Maui Parrotbills, an endangered Hawaiian honeycreeper

    No full text
    Maui Parrotbills (Pseudonestor xanthophrys), critically endangered Hawaiian honeycreepers endemic to the island of Maui, are restricted to a single population of ?500 individuals located in remote, mountainous terrain. From January to June 2006–2011, we located nests and fledglings in the Hanawi Natural Area Reserve (NAR) in east Maui, Hawaii, to document nest success and annual reproductive success. Nest success is a commonly used measure of productivity and is a central component of many demographic studies. Annual reproductive success is less frequently documented because greater effort is required to monitor the reproductive success of breeding pairs through time. However, for species whose nests are difficult to locate or access, such as Maui Parrotbills, the presence or absence of fledged young may provide a more accurate measure of breeding success than monitoring nests. During our study, we located and determined the outcome of 30 nests to document nest success, and monitored 106 territories for the presence or absence of fledglings to calculate annual reproductive success. Nest success probability was 19% (N= 30) and seasonal nest success was 46%. During our monitoring efforts, 49 of 106 breeding pairs produced a single fledged young. Because parrotbills typically have single egg clutches and only re-nest after nests fail, the presence or absence of a fledgling is an indication of a pair's overall reproductive success for a breeding season. Based on the number of fledglings per pair, our estimate of annual reproductive success was 46%, confirming our initial productivity estimate from nests. Thus, our results indicate that the two methods, determining annual reproductive success by monitoring fledglings and calculating nest success, provide similar estimates of annual productivity for Maui Parrotbills. Based on our estimates, the parrotbill population appears to be demographically stable. However, our productivity estimate was based only on the population at Hanawi, an area representing just 3% of the total range of parrotbills. Thus, our results may not accurately reflect the status of parrotbills over their entire range

    Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California

    No full text
    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature – collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate – particularly precipitation and water availability – is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local-scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study
    corecore