314 research outputs found

    Effects of mode-mode and isospin-isospin correlations on domain formation of disoriented chiral condensates

    Full text link
    The effects of mode-mode and isospin-isospin correlations on nonequilibrium chiral dynamics are investigated by using the method of the time dependent variational approach with squeezed states as trial states. Our numerical simulations show that large domains of the disoriented chiral condensate (DCC) are formed due to the combined effect of the mode-mode and isospin-isospin correlations. Moreover, it is found that, when the mode-mode correlation is included, the DCC domain formation is accompanied by the amplification of the quantum fluctuation, which implies the squeezing of the state. However, neither the DCC domain formation nor the amplification of the quantum fluctuation is observed if only the isospin-isospin correlation is included. This suggests that the mode-mode coupling plays a key role in the DCC domain formation.Comment: 10 pages, 11 figures; Correction of an error in Fig.

    Time-Evolution of a Collective Meson Field by the Use of a Squeezed State

    Full text link
    A time-evolution of quantum meson fields is investigated in a linear sigma model by means of the time-dependent variational approach with a squeezed state. The chiral condensate, which is a mean field of the quantum meson fields, and quantum fluctuations around it are treated self-consistently in this approach. The attention is payed to the description of the relaxation process of the chiral condensate, where the energy stored in the mean field configuration flows to the fluctuation modes. It is shown that the quantum fluctuations play an important role to describe this relaxation process.Comment: 18 pages, 22 postscript figures, uses PTPTeX.st

    Chaotic behaviour of nonlinear waves and solitons of perturbed Korteweg - de Vries equation

    Full text link
    This paper considers properties of nonlinear waves and solitons of Korteweg-de Vries equation in the presence of external perturbation. For time-periodic hamiltonian perturbation the width of the stochastic layer is calculated. The conclusions about chaotic behaviour in long-period waves and solitons are inferred. Obtained theoretical results find experimental confirmation in experiments with the propagation of ion-acoustic waves in plasma.Comment: 7 pages, LaTeX, 2 Postscript figures, submitted to Reports on Mathematical Physic

    Nonequilibrium chiral dynamics by the time dependent variational approach with squeezed states

    Full text link
    We investigate the inhomogeneous chiral dynamics of the O(4) linear sigma model in 1+1 dimensions using the time dependent variational approach in the space spanned by the squeezed states. We compare two cases, with and without the Gaussian approximation for the Green's functions. We show that mode-mode correlation plays a decisive role in the out-of-equilibrium quantum dynamics of domain formation and squeezing of states.Comment: 5 pages, 4 figures. RevTex, version to appear in Phys. Rev. C. Rapid Communicatio

    Sufficient integral criteria for instability of the free charged surface of an ideal liquid

    Full text link
    Applying the method of integral estimates to the analysis of three-wave processes we derive the sufficient criteria for the hard loss of stability of the charged plane surface of liquids with different physical properties. The influence of higher-order wave interactions on the instability dynamics is also discussed.Comment: 9 page

    Normal modes of a quasi-one-dimensional multi-chain complex plasma

    Get PDF
    We studied equally charged particles, suspended in a complex plasma, which move in a plane and interact with a screened Coulomb potential (Yukawa type) and with an additional external confining parabolic potential in one direction, that makes the system quasi-one-dimensional (Q1D). The normal modes of the system are studied in the presence of dissipation. We also investigated how a perpendicular magnetic field couples the phonon modes with each other. Two different ways of exciting the normal modes are discussed: 1) a uniform excitation of the Q1D lattice, and 2) a local forced excitation of the system in which one particle is driven by e.g. a laser. Our results are in very good agreement with recent experimental findings on a finite single chain system (Phys. Rev. Lett. {\bf 91}, 255003 (2003)). Predictions are made for the normal modes of multi-chain structures in the presence of damping.Comment: 15 pages, 14 figures, accepted for publication on PR

    Spreading of waves in nonlinear disordered media

    Full text link
    We analyze mechanisms and regimes of wave packet spreading in nonlinear disordered media. We predict that wave packets can spread in two regimes of strong and weak chaos. We discuss resonance probabilities, nonlinear diffusion equations, and predict a dynamical crossover from strong to weak chaos. The crossover is controlled by the ratio of nonlinear frequency shifts and the average eigenvalue spacing of eigenstates of the linear equations within one localization volume. We consider generalized models in higher lattice dimensions and obtain critical values for the nonlinearity power, the dimension, and norm density, which influence possible dynamical outcomes in a qualitative way.Comment: 24 pages, 3 figures. arXiv admin note: text overlap with arXiv:0901.441

    Ion-beam-driven resonant ion cyclotron instability

    Get PDF
    The resonant ion-beam-driven electrostatic ion cyclotron instability is identified. Measured dispersion relation and onset vs. beam energy and density agree with numerical calculations based on a theory which includes beam acoustic terms. After amplitude saturation, velocity space diffusion of the beam ions is observed. (auth

    Photon emission by an ultra-relativistic particle channeling in a periodically bent crystal

    Get PDF
    This paper is devoted to a detailed analysis of the new type of the undulator radiation generated by an ultra-relativistic charged particle channeling along a crystal plane, which is periodically bent by a transverse acoustic wave, as well as to the conditions limiting the observation of this phenomenon. This mechanism makes feasible the generation of electromagnetic radiation, both spontaneous and stimulated, emitted in a wide range of the photon energies, from X- up to gamma-rays
    corecore