217 research outputs found

    IC Chip to PC Board Connector System

    Get PDF
    In accordance with one embodiment of the present invention, an apparatus of moderate cost is provided which can readily releasably connect an integrated circuit to a circuit board. The apparatus includes a socket that can be readily mounted on the circuit board, the socket forming a largely rectangular cavity which closely receives the integrated circuit. The socket has a lower portion forming vertical through slots, each slot extending parallel to one of the sides of the rectangular socket. An elongated vertically-compressible interface device lies in each of the slots, each interface device having a row of compressible conductors with upper ends pressing against conductive pads on the underside of the integrated circuit, and each compressible conduc tor having a lower end pressing against a conductive trace on the circuit board. A cover or the like mounts on the socket and presses the integrated circuit down wardly into the socket, to compress the interface de vices to interconnect the integrated circuit to the circuit board

    ZEB2 and MEIS1 independently contribute to hematopoiesis via early hematopoietic enhancer activation

    Get PDF
    血球細胞分化に必要な新たな因子を同定. 京都大学プレスリリース. 2023-09-29.Delineating the dynamic transcriptional and epigenetic landscape regulating hematopoiesis. 京都大学プレスリリース. 2023-10-17.Cell differentiation is achieved by acquiring a cell type-specific transcriptional program and epigenetic landscape. While the cell type-specific patterning of enhancers has been shown to precede cell fate decisions, it remains unclear how regulators of these enhancers are induced to initiate cell specification and how they appropriately restrict cells that differentiate. Here, using embryonic stem cell–derived hematopoietic cell differentiation cultures, we show the activation of some hematopoietic enhancers during arterialization of hemogenic endothelium, a prerequisite for hematopoiesis. We further reveal that ZEB2, a factor involved in the transcriptional regulation of arterial endothelial cells, and a hematopoietic regulator MEIS1 are independently required for activating these enhancers. Concomitantly, ZEB2 or MEIS1 deficiency impaired hematopoietic cell development. These results suggest that multiple regulators expressed from an earlier developmental stage non-redundantly contribute to the establishment of hematopoietic enhancer landscape, thereby restricting cell differentiation despite the unrestricted expression of these regulators to hematopoietic cells

    Heavy metal contamination of soil and sediment in Zambia

    Get PDF
    Heavy metal pollution is one of the most important problems in Zambia and causes serious effects to humans and animals. The aim of the present study was to evaluate the spatial distribution of heavy metals in main areas of Zambia and understand the characteristics of the pollution in each area. River and lake sediments and soil samples were collected from a large area of Zambia and analyzed for ten heavy metals (Cr, Co, Ni, Cu, Zn, As, Cd, Pb, Sr and Hg). The results indicate that heavy metal pollution in Zambia has strong regional differences. Using cluster analysis, the patterns of heavy metal pollution were divided into three major clusters: (1) Kabwe, (2) Copperbelt and (3) Lusaka and other areas. Heavy metals in the Copperbelt area are transported to downstream areas by the Kafue River. Pollution was also detected in national parks, and Lake Itezhi-tezhi has been polluted with high concentrations of Cu, possibly from mining activities in the upper reaches of the river. However, areas geographically distant from mining beds had only moderate or low heavy metal concentrations, although the concentrations of Pb and Zn were highly correlated with the populations of each town. Our findings indicate that heavy metal pollution in Zambia is still increasing, due to human activities, especially mining.Key words: Heavy metal, contamination, mining, soil, sediment

    SMN promotes mitochondrial metabolic maturation during myogenesis by regulating the MYOD-miRNA axis

    Get PDF
    脊髄性筋萎縮症における骨格筋病変の発症メカニズムの一部を解明. 京都大学プレスリリース. 2023-01-17.Pathogenesis of skeletal muscle lesions in spinal muscular atrophy. 京都大学プレスリリース. 2023-02-17.Spinal muscular atrophy (SMA) is a congenital neuromuscular disease caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene. Although the primary cause of progressive muscle atrophy in SMA has classically been considered the degeneration of motor neurons, recent studies have indicated a skeletal muscle–specific pathological phenotype such as impaired mitochondrial function and enhanced cell death. Here, we found that the down-regulation of SMN causes mitochondrial dysfunction and subsequent cell death in in vitro models of skeletal myogenesis with both a murine C2C12 cell line and human induced pluripotent stem cells. During myogenesis, SMN binds to the upstream genomic regions of MYOD1 and microRNA (miR)-1 and miR-206. Accordingly, the loss of SMN down-regulates these miRs, whereas supplementation of the miRs recovers the mitochondrial function, cell survival, and myotube formation of SMN-deficient C2C12, indicating the SMN-miR axis is essential for myogenic metabolic maturation. In addition, the introduction of the miRs into ex vivo muscle stem cells derived from Δ7-SMA mice caused myotube formation and muscle contraction. In conclusion, our data revealed novel transcriptional roles of SMN during myogenesis, providing an alternative muscle-oriented therapeutic strategy for SMA patients

    Breakdown of supersaturation barrier links protein folding to amyloid formation

    Get PDF
    The thermodynamic hypothesis of protein folding, known as the “Anfinsen’s dogma” states that the native structure of a protein represents a free energy minimum determined by the amino acid sequence. However, inconsistent with the Anfinsen’s dogma, globular proteins can misfold to form amyloid fibrils, which are ordered aggregates associated with diseases such as Alzheimer’s and Parkinson’s diseases. Here, we present a general concept for the link between folding and misfolding. We tested the accessibility of the amyloid state for various proteins upon heating and agitation. Many of them showed Anfinsen-like reversible unfolding upon heating, but formed amyloid fibrils upon agitation at high temperatures. We show that folding and amyloid formation are separated by the supersaturation barrier of a protein. Its breakdown is required to shift the protein to the amyloid pathway. Thus, the breakdown of supersaturation links the Anfinsen’s intramolecular folding universe and the intermolecular misfolding universe

    N-Acetylcysteine prevents amyloid-β secretion in neurons derived from human pluripotent stem cells with trisomy 21

    Get PDF
    ダウン症患者さん由来の神経細胞からのアミロイドβ分泌は抗酸化剤で抑止される. 京都大学プレスリリース. 2021-08-31.Stopping dementia in Down syndrome patients. 京都大学プレスリリース. 2021-08-31.Down syndrome (DS) is caused by the trisomy of chromosome 21. Among the many disabilities found in individuals with DS is an increased risk of early-onset Alzheimer's disease (AD). Although higher oxidative stress and an upregulation of amyloid β (Aβ) peptides from an extra copy of the APP gene are attributed to the AD susceptibility, the relationship between the two factors is unclear. To address this issue, we established an in vitro cellular model using neurons differentiated from DS patient-derived induced pluripotent stem cells (iPSCs) and isogenic euploid iPSCs. Neurons differentiated from DS patient-derived iPSCs secreted more Aβ compared to those differentiated from the euploid iPSCs. Treatment of the neurons with an antioxidant, N-acetylcysteine, significantly suppressed the Aβ secretion. These findings suggest that oxidative stress has an important role in controlling the Aβ level in neurons differentiated from DS patient-derived iPSCs and that N-acetylcysteine can be a potential therapeutic option to ameliorate the Aβ secretion

    The balance between cathepsin C and cystatin F controls remyelination in the brain of Plp1-overexpressing mouse, a chronic demyelinating disease model

    Get PDF
    In demyelinating diseases such as multiple sclerosis (MS), an imbalance between the demyelination and remyelination rates underlies the degenerative processes. Microglial activation is observed in demyelinating lesions; however, the molecular mechanism responsible for the homeostatic/environmental change remains elusive. We previously found that cystatin F (CysF), a cysteine protease inhibitor, is selectively expressed in microglia only in actively demyelinating/remyelinating lesions but ceases expression in chronic lesions, suggesting its role in remyelination. Here, we report the effects of manipulating the expression of CysF and cathepsin C (CatC), a key target of CysF, in a murine model of transgenic demyelinating disease, Plp4e/-. During the active remyelinating phase, both CysF knockdown (CysFKD) and microglial-selective CatC overexpression (CatCOE) showed a worsening of the demyelination in Plp4e/- transgenic mice. Conversely, during the chronic demyelinating phase, CatC knockdown (CatCKD) ameliorated the demyelination. Our results suggest that the balance between CatC and CysF expression controls the demyelination and remyelination process

    Phase II study of S-1, a novel oral fluorouracil, in advanced non-small-cell lung cancer

    Get PDF
    The purpose of this study was to evaluate the efficacy and safety of a novel oral anticancer fluoropyrimidine derivative, S-1, in patients receiving initial chemotherapy for unresectable, advanced non-small-cell lung cancer (NSCLC). Between June 1996 and July 1998, 62 patients with NSCLC who had not received previous chemotherapy for advanced disease were enrolled in this study. 59 patients (22 stage IIIB and 37 stage IV) were eligible for the evaluation of efficacy and safety. S-1 was administered orally, twice daily, after meals. 3 dosages of S-1 were prescribed according to body surface area (BSA) so that they would be approximately equivalent to 80 mg m−2day−1: BSA < 1.25 m2, 40 mg b.i.d.; BSA≥1.25 but <1.5 m2; 50 mg b.i.d., and BSA≥1.5 m2: 60 mg b.i.d. One cycle consisted of consecutive administration of S-1 for 28 days followed by a 2-week rest period, and cycles were repeated up to 4 times. The partial response (PR) rate of the eligible patients was 22.0% (13/59); (95% confidence interval: 12.3–34.7%). A PR was observed in 22.7% (5/22) of the stage IIIB patients and 21.6% (8/37) of the stage IV patients. The median response duration was 3.4 months (1.1–13.7 months or longer). Grade 4 neutropenia was observed in one of the 59 patients (1.7%). The grade 3 or 4 toxicities consisted of decreased haemoglobin level in 1.7% of patients (1/59), neutropenia in 6.8% (4/59), thrombocytopenia in 1.7% (1/59), anorexia in 10.2% (6/59), diarrhoea in 8.5% (5/59), stomatitis in 1.7% (1/59), and malaise in 6.8% (4/59), and their incidences were relatively low. There were no irreversible, severe or unexpected toxicities. The median survival time (MST) of all patients was 10.2 months (95% confidence interval: 7.7–14.5 months), and the one-year survival rate was 41.1%. The MST of the stage IIIB patients was 7.9 months, and that of the stage IV patients was 11.1 months. The one-year survival rates of the stage IIIB and IV patients were 30.7% and 47.4%, respectively. S-1 was considered to be an active single agent against NSCLC. Further study of S-1 with other active agents is warranted. © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    Plasma Corticosterone Activates SGK1 and Induces Morphological Changes in Oligodendrocytes in Corpus Callosum

    Get PDF
    Repeated stressful events are known to be associated with onset of depression. Further, stress activates the hypothalamic–pituitary–adrenocortical (HPA) system by elevating plasma cortisol levels. However, little is known about the related downstream molecular pathway. In this study, by using repeated water-immersion and restraint stress (WIRS) as a stressor for mice, we attempted to elucidate the molecular pathway induced by elevated plasma corticosterone levels. We observed the following effects both, in vivo and in vitro: (1) repeated exposure to WIRS activates the 3-phosphoinositide-dependent protein kinase (PDK1)–serum glucocorticoid regulated kinase (SGK1)–N-myc downstream-regulated gene 1 (NDRG1)–adhesion molecule (i.e., N-cadherin, α-catenin, and β-catenin) stabilization pathway via an increase in plasma corticosterone levels; (2) the activation of this signaling pathway induces morphological changes in oligodendrocytes; and (3) after recovery from chronic stress, the abnormal arborization of oligodendrocytes and depression-like symptoms return to the control levels. Our data strongly suggest that these abnornalities of oligodendrocytes are possibly related to depression-like symptoms

    Proteomic analysis of stage I primary lung adenocarcinoma aimed at individualisation of postoperative therapy

    Get PDF
    Although postoperative adjuvant chemotherapy (PAC) with uracil–tegafur significantly improves the prognosis of patients with stage I lung adenocarcinoma, subset analysis has revealed that only 11.5% of patients with stage IB derive actual benefit from such therapy. Therefore, it is extremely important to identify patients for whom adjuvant chemotherapy will be beneficial. We performed comprehensive protein analysis of 24 surgically resected specimens of stage I adenocarcinoma using liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by bioinformatical investigations to identify protein molecules. Furthermore, we carried out immunohistochemical studies of 90 adenocarcinoma specimens to validate the results of LC-MS/MS. We detected two kinds of protein molecules (myosin IIA and vimentin) by LC-MS/MS. We confirmed their immunohistochemical expression and distribution, and evaluated the relationship between the expression of these proteins and prognosis after adjuvant chemotherapy. Patients with no expression of either myosin IIA or vimentin showed a significantly better outcome regardless of PAC using uracil–tegafur. However, we were unable to select responders to uracil–tegafur using these proteins. Cases of adenocarcinoma lacking expression of either myosin IIA or vimentin show a good outcome without PAC, and therefore do not require such treatment
    corecore