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Main points 1 

-- The balance between cystatin F (CysF) and cathepsin C (CatC) regulates remyelination in a 2 

mouse model of demyelinating disease. 3 

-- CysF and CatC knockdown, and CatC overexpression in microglia were generated using a 4 

versatile gene manipulation system. 5 
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Abstract 1 

In demyelinating diseases such as multiple sclerosis (MS), an imbalance between the 2 

demyelination and remyelination rates underlies the degenerative processes. Microglial 3 

activation is observed in demyelinating lesions; however, the molecular mechanism 4 

responsible for the homeostatic/environmental change remains elusive. We previously found 5 

that cystatin F (CysF), a cysteine protease inhibitor, is selectively expressed in microglia only 6 

in actively demyelinating/remyelinating lesions but ceases expression in chronic lesions, 7 

suggesting its role in remyelination. Here we report the effects of manipulating the expression 8 

of CysF and cathepsin C (CatC), a key target of CysF, in a murine model of transgenic 9 

demyelinating disease, Plp4e/-. During the active remyelinating phase, both CysF knockdown 10 

(CysFKD) and microglial-selective CatC overexpression (CatCOE) showed a worsening of 11 

the demyelination in Plp4e/- transgenic mice. Conversely, during the chronic demyelinating 12 

phase, CatC knockdown (CatCKD) ameliorated the demyelination. Our results suggest that 13 

the balance between CatC and CysF expression controls the demyelination and remyelination 14 

process. 15 
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Introduction 1 

In multiple sclerosis (MS), the immune system attacks the myelin sheath causing 2 

inflammation and injury to the sheath, and ultimately to the nerve fibers that it surrounds. 3 

This results in numerous sclerotic regions and the appearance of naked axons where 4 

premyelinating oligodendrocytes failed to remyelinate the axons. It has become increasingly 5 

important to elucidate the causes of this impaired remyelination in order to aid the 6 

development of a treatment for chronic MS lesions. An imbalance in the 7 

demyelination/remyelination rate underlies the degenerative processes in demyelinating 8 

lesions. By investigating the environmental cues associated with this imbalance, insights into 9 

means of limiting demyelination and promoting remyelination may be obtained. It was 10 

originally proposed that the main cause of impaired remyelination was the lack of 11 

oligodendrocyte progenitor cells (OPCs). However, premyelinating oligodendrocytes and 12 

OPCs have been found in demyelinated MS lesions (Chang et al., 2000; Chang et al., 2002) 13 

and in mice with experimental autoimmune encephalomyelitis (EAE) (Girolamo et al., 2011). 14 

Moreover, we have shown that additional oligodendrocyte lineage cells are produced during 15 

repair, but in chronic demyelinated lesions their processes degenerate after maturation 16 

(Shimizu et al., 2013). 17 

Thus, in chronic demyelinated lesions the environment surrounding oligodendrocytes 18 

and OPCs likely changes from being one that is permissive to remyelination to one that is 19 

non-permissive. The significance of the environment surrounding oligodendrocytes and 20 

OPCs has been gaining increased attention due to the identification of factors such as PSA-21 

NCAM (Charles et al., 2002) and hyaluronan (Back et al., 2005) that inhibit remyelination. 22 

Microglia are well known to act as innate resident immune cells and active surveyors 23 

of the extracellular environment in the central nervous system (CNS) (Arnoux and Audinat, 24 

2015; Kreutzberg, 1996; Ransohoff and Perry, 2009; Schafer et al., 2012; Shemer et al., 25 
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2015). During the remyelination process, microglia play a critical role in myelin removal 1 

(Kotter et al., 2006). However, it has been reported that microglial paralysis can repress 2 

experimental autoimmune encephalomyelitis (EAE) (Heppner et al., 2005). Moreover, it is 3 

known that macrophages laden with myelin are anti-inflammatory in MS (Boven et al., 2006), 4 

and that myelin-phagocytosing macrophages in the CNS and the peripheral nervous system 5 

(PNS) show both inflammatory and anti-inflammatory responses (van Rossum et al., 2008). 6 

Also, CCR5 expression on microglia is associated with early remyelination (Trebst et al., 7 

2008). Thus, the comprehensive role of microglia in remyelination remains elusive. 8 

We have utilized the hemizygous proteolipid protein 1 (Plp1) transgenic mouse strain, 9 

4e (Plp4e/–), which has two extra Plp1 genes, and demonstrated its use as an ideal model for 10 

studying demyelination and remyelination (Kagawa et al., 1994; Shimizu et al., 2013). The 11 

use of appropriate animal models is essential for studying the mechanisms underlying these 12 

environmental changes. Transgenic Plp4e/- mice appear to undergo normal myelination with 13 

no signs of myelin degeneration until two months of age. However, at two months of age they 14 

show spontaneous demyelination accompanied by remyelination in the early phase but which 15 

terminates after 6 months of age (during the chronic demyelinating phase), resulting in the 16 

appearance of chronic lesions throughout the central nervous system and naked axons 17 

(Kagawa et al., 1994). During the demyelinating phase, Plp4e/- mice do not show T-cell 18 

infiltration in the lesions. However, an upregulation of IL-1 and TNF- mRNA was detected, 19 

although their protein levels were below detection (unpublished data). While the 20 

oligodendrocytes extended processes parallel with the axons, they failed to form myelin 21 

structure, indicative of the presence of premyelinating oligodendrocytes (Ma et al., 2006). 22 

The presence of premyelinating oligodendrocytes in chronic demyelinated lesions is also 23 

associated with MS (Chang et al., 2002). Thus, we used the Plp4e/- mouse as a model to study 24 

the mechanisms behind remyelination impairment in chronic lesions.  25 
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In a previous study, we performed cDNA microarray analysis using Plp4e/- mice to 1 

search for changes in gene expression (Ma et al., 2007). We identified that microglial CysF 2 

expression is indicative of ongoing demyelination/remyelination and the absence of CysF 3 

expression indicates the cessation of remyelination in demyelinating lesions (Ma et al., 2011). 4 

Cystatin F is a cysteine protease inhibitor expressed selectively in immune cells (Halfon et al., 5 

1998). The official symbol of cystatin F is Cst7, also known as CMAP (cystatin-like 6 

metastasis-associated protein) and leukocystatin; in this study we will use CysF for the 7 

abbreviation of cystatin F. A major target of CysF is the lysosomal cysteine protease 8 

cathepsin C (Hamilton et al., 2008), which is known to regulate the activation of effector 9 

granule-associated serine proteases in T cells, natural killer cells, neutrophils and mast cells 10 

that are related to immune and inflammatory processes (Adkison et al., 2002; Eyles et al., 11 

2006). The official symbol of cathepsin C is Ctsc, also known as DPP1, DPPI and AI047818, 12 

but here we will use CatC as the abbreviation for cathepsin C. In our previous study, CysF 13 

was shown to be expressed by activated microglia primarily in the white matter during acute 14 

demyelination and active remyelination, but its expression was terminated during the chronic 15 

demyelinating phase (at 8 months of age) except in regions where the myelin remained intact. 16 

Moreover, in MS, CysF expression is limited to the remyelinating plaques but not found 17 

within the chronic lesions, consistent with the pattern in the Plp4e/- mouse model of 18 

demyelinating disease (Ma et al., 2011). 19 

In this study, we investigated the roles of CatC and CysF in Plp4e/- mice. We 20 

generated novel transgenic mouse lines in which the levels of CatC or CysF can be 21 

manipulated by use of the Flexible Accelerated STOP Tetracycline Operator  knockin 22 

(FAST) system (Tanaka et al., 2010). We show that the balance between CatC and CysF 23 

expression in the brain controls remyelination in chronic demyelinating lesions. These results 24 
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should aid in the development of novel and effective treatments for MS and other 1 

demyelinating diseases. 2 

 3 

 4 

 5 

 6 
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Materials and Methods 1 

 2 

Ethics statement 3 

All animal procedures were conducted in accordance with the guidelines described by the 4 

National Institutes of Health Guide for the Care and Use of Laboratory Animals, and 5 

approved by the National Institute for Physiological Sciences Animal Care and Use 6 

Committee. The generation of STOP-tetO mice was in accordance with the guidelines set by 7 

the animal welfare committee and the ethics committee of Niigata University. 8 

 9 

Generation of STOP-tetO knockin mice 10 

The targeting vector containing the 10 kb 3’- homology arm, Neo STOP-tetO cassette, 1.8 kb 11 

5’- homology arm, and diphtheria toxin A subunit (DTA) was designed to insert the Neo 12 

STOP-tetO cassette just upstream of the cathepsin C or cystatin F translation initiation site 13 

(Tanaka et al., 2010). The C57BL/6N ES cell line RENKA (Mishina and Sakimura, 2007) 14 

was used for the recombination. Chimeric mice were mated with C57BL/6N mice, and 15 

germline-transmitted offspring were established as CatC STOP-tetO and CysF STOP-tetO 16 

heterozygous knockin mice (CatC STOP-tetO/+and CysFSTOP-tetO/+, respectively). 17 

 18 

Southern blotting 19 

Genomic DNA was digested with SpeI or with PstI and EcoRI for 5'- and 3'-homology arms 20 

of CatC STOP-tetO mice, and with AflII or with XbaI and EcoRV for the 5'- or 3'- homology 21 

arms of CysF STOP-tetO mice, respectively. The fragments were separated on a 0.8% 22 

agarose gel, and blotted onto a nylon membrane. 32P-random-prime-labeled probe (Prime-it II, 23 

Stratagene, La Jolla, CA) was hybridized. The probe positions for the 5'- and 3'- homology 24 

arms were from -4048 to -3029 or from -3036 to -2077 bases upstream, and from 5373 to 25 
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6103 or from 4615 to 5664 bases downstream from the translation initiation site of CatC or 1 

CysF, respectively. The probes were located outside of and within the 5'- and 3'-homology 2 

arms, respectively. Predicted sizes were: 10 kb and 6.8 kb (SpeI digestion) for the 5’-3 

homology arm in the wild type allele and the CatC STOP-tetO allele; and 10 kb (PstI 4 

digestion) or 5 kb (EcoRI digestion) in the wild type allele and 8 kb (PstI digestion), 5 kb 5 

(EcoRI digestion) in the CatC STOP-tetO allele for the 3’-homology arm, and 8.5 kb and 5.7 6 

kb (AflII digestion) for the 5’- homology arm in the wild type allele and the CysF STOP-tetO 7 

allele; and 11 kb (XbaI digestion) and 12 kb (EcoRV digestion) in the wild type allele and 7.5 8 

kb (XbaI digestion), 12 kb (EcoRV digestion) in the CysF STOP-tetO allele for the 3’- 9 

homology arm, respectively. 10 

 11 

Animals 12 

We used the hemizygous Plp1 transgenic mouse strain 4e (Plp4e/-; C57Bl6/DBA2 mixed 13 

background; Kagawa et al., 1994), CysF STOP-tetO mouse (CysFSTOP-tetO/+), CatC STOP-14 

tetO mouse (CatCSTOP-tetO/+) (both C57BL/6N background) and Iba1-tTA mouse line 75 15 

(initial BDF1 background backcrossed to C57BL/6 background; Tanaka et al., 2012). 16 

Genotyping of the Plp4e/- and Iba1-tTA mice was performed as described previously (Kagawa 17 

et al., 1994; Tanaka et al., 2012). For CysF STOP-tetO mice, we used CysF 791L: 5’-18 

GCTGCTGTTATGCTTGATCCC-3’, CysF 708L: 5’-TCTCAGGGTTCCAAGAGTGTCC-19 

3’, CysF 202U: 5’-TTTCTTCACATCAGCATCCC-3’ and tetOup: 5’-20 

AGCAGAGCTCGTTTAGTGAACCGT-3’ primers. For CatC STOP-tetO mice, 21 

CatC205L:5’-AAGGCAAGGACTCAGGGACAGAAA-3’, CatC361U: 5’-22 

TTTGGCGTTCCTTGAAAGGCAGAG-3’ and tetOup primers. To detect the CysF or CatC 23 

WT allele, we used CysF202U and CysF708L (PCR product size: 910 bp), or CatC361U and 24 

CatC205L (PCR product size: 566 bp), respectively. To detect the CysF STOP-tetO or CatC 25 
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STOP-tetO KI allele, we used tetOup and CysF791L (PCR product size: approximately 930 1 

bp) or CatC205L (PCR product size: approximately 340 bp), respectively. 2 

 3 

Preparation of primary cultured microglia and immunocytochemistry 4 

The previously reported method for rat primary microglial cultures (Sawada et al., 1990; 5 

Suzumura et al., 1987) was applied to mouse. Microglial cells were harvested from primary 6 

mixed glial cell cultures prepared from neonatal CD1 mouse brains (Charles River, 7 

Kanagawa, Japan). In brief, after carefully removing the meninges, neonatal brain was 8 

dissociated by gentle pipetting. The cell suspension was plated in 75 cm2 culture flasks 9 

(Falcon 3024: Becton-Dickinson Japan, Tokyo, Japan) at a density of five brains per 12 flasks 10 

in 10 ml Eagle's minimum essential medium supplemented with 10% fetal bovine serum, 5 11 

mg/ml bovine insulin, and 0.2% glucose. Microglial cells were isolated on days 14-21 on a 12 

rotary shaker as previously reported (Suzumura et al., 1987) and cultured in the medium for 13 

two days. Two days after microglial separation, immunocytochemistry was performed as 14 

described previously (Shimizu et al., 2013). The following primary antibodies were used: 15 

rabbit anti-Iba1 polyclonal antibody (1:1000; Wako, Osaka, Japan), rabbit anti-cystatin F 16 

polyclonal antibody (1:1000; Gift from Prof. Colin Watts, University of Dundee), mouse 17 

anti-cathepsin C polyclonal antibody (1:100; R&D system, Minneapolis, MN). 18 

 19 

Cathepsin C activity assay 20 

Fresh brain tissues from CatCSTOP-tetO/+ and CatCOE mice were homogenized in 100 l of 21 

lysis buffer (1% Triton-X-100 in PBS) per 10 mg of brain tissue two times for 10 seconds on 22 

ice using a potter homogenizer and centrifuged at 10,500 g at 4°C for 15 min. Supernatants 23 

were collected and used in the activity assay to measure CatC activity in the transgenic mice. 24 

Reaction mixtures containing 50 mM NaAc pH 5.5, 30 mM NaCl, 1 mM DTT, 0.5 mM 25 
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EDTA, 10 mM o-phenanthroline, 10 µg/ml Pepstatin A and sample were prepared. After pre-1 

incubation of the reaction mixtures for 2 min at room temperature, 100 µM substrate (H-2 

GlyArg-β-naphthylamide in DMSO, BACHEM, Torrance, CA) was added and incubated for 3 

15 min at 37°C. Fluorescence intensity (Excitation 335 nm, Emission 405 nm) was monitored 4 

for 15 min at 30 sec intervals to determine the initial rates based on initial velocity (v) using 5 

4-Methoxy-β-naphthylamine as a reference compound. 6 

 7 

In Situ hybridization and immunohistochemistry 8 

Mice were perfused intracardially through the left ventricle with 4 % 9 

paraformaldehyde (PFA), and brains and spinal cords were dissected out. The tissues were 10 

post-fixed with 4 % PFA overnight and cryoprotected with 20 % sucrose-PBS buffer 11 

overnight and frozen. Cryosections were prepared at 20 m thickness with a cryostat and 12 

used for in situ hybridization (ISH) and immunohistochemistry (IHC). ISH was performed as 13 

described (Ma et al., 2011). The following plasmids containing mouse cDNA were used to 14 

generate the ISH probes: c-fms (Ma et al., 2011), cystatin F (Ma et al., 2011), and cathepsin 15 

C (nucleotides 193-1324 corresponding to NM_009982.4). 16 

Immunohistochemistry was performed as described (Shimizu et al., 2013). The 17 

following primary antibodies were used: rabbit anti-Iba1 polyclonal antibody (1:1000; Wako, 18 

Osaka, Japan), rabbit anti-cystatin F polyclonal antibody (1:1000; Gift from Prof. Colin 19 

Watts, University of Dundee), mouse anti-cathepsin C polyclonal antibody (1:100; R&D 20 

system, Minneapolis, MN), mouse anti-CNPase monoclonal antibody (1:1000; Sigma, St. 21 

Louis, MO), goat anti-arginase-1 polyclonal antibody and rat anti-CD16/32 monoclonal 22 

antibody (1:200; Santa Cruz, CA, USA). Secondary antibodies were labelled with biotin 23 

(Vectastain) or were FITC-conjugated (Invitrogen, Carlsbad, CA). DAB coloring was 24 
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performed as described previously (Ma et al., 2011). Images were captured using an Olympus 1 

digital camera system (DP70) in combination with a microscope (Olympus BX51). 2 

 3 

Image analysis and statistical analyses 4 

The myelin-stained region (area of CNPase labelling) was quantified by measuring the 5 

density using the Image J program for densitometric analysis (National Institutes of Health, 6 

Bethesda, MD, USA). Data were expressed as the mean ± S.E.M. Significance was assessed 7 

by an unpaired two-tailed Student’s t-test using GraphPad Prism version 5.0b statistics 8 

software (GraphPad Software, Inc., La Jolla, CA, USA). P-values of less than 0.05 were 9 

considered significant. 10 

 11 

Electron microscopy 12 

Mice were perfused intracardially through the left ventricle with a fixative containing 2.5 % 13 

(v/v) glutaraldehyde and 2.0 % (w/v) PFA in 0.1 M cacodylate buffer (pH 7.4). Brains were 14 

dissected and immersed in the same fixative for a couple of days at 4 °C, then 0.5 mm-thick 15 

para-sagittal slices were cut with a razor blade and 2 mm x 1.5 mm blocks from the cerebellar 16 

lobes were processed for electron microscopy. After osmification in a 1 % (w/v) osmium 17 

tetroxide solution for 2 h at 4 °C, the specimens were dehydrated through a graded alcohol 18 

series and embedded in Epon 812 (TAAB Laboratories, Aldermaston, UK). Semi-thin 19 

sections at m thickness were collected, stained with 0.5% (w/v) Toluidine blue in 0.1 M 20 

PB and imaged with a light microscope (Olympus) equipped with an auto-digitizer to 21 

generate “virtual slides” (NanoZoomer-RS, Hamamatsu Photonics). For whole area analysis 22 

of the same specimens by EM, ultrathin sections were cut on an ultramicrotome (Ultracut 23 

UCT, Leica, Germany) without trimming, collected on platinum-coated glass slides, stained 24 

with uranyl acetate and lead citrate and imaged with a scanning electron microscope 25 
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equipped with a back-scattered electron beam detector (SU8010, Hitachi, Japan) at 1.5 KV 1 

accelerating voltage. From each section, a digitized image with an area of about 200 m by 2 

300 m was captured at a resolution of 24.8 nm/pixel. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 
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Results 1 

 2 

Spatial and temporal expression pattern differences of cathepsin C and cystatin F 3 

between active remyelinating and chronic demyelinated phases 4 

In Plp4e/- mice, while spontaneous myelin degeneration starts at 2 months of age, 5 

rapid axon remyelination occurs until 6 months of age. After 6 months, the maturation of 6 

oligodendrocytes is arrested and remyelination ceases (Ma et al., 2006; Shimizu et al., 2013). 7 

We previously found that CysF gene expression was greatly reduced at 8 months of age 8 

compared to 4 and 6 months in Plp4e/- mice (Ma et al., 2007; Ma et al., 2011). It has been 9 

reported that a major target of CysF is a cysteine protease, CatC (Hamilton et al., 2008). Thus 10 

we examined CatC mRNA expression in Plp4e/- mice at different time points. At the onset of 11 

myelin degeneration in Plp4e/- mice at 2 months of age, CysF mRNA expression began (Fig. 12 

1A, C), however, CatC mRNA was not yet detected (Fig. 1B, D). During the subsequent 13 

demyelination/remyelination phase at 4 months of age, the CysF expression pattern was 14 

similar to that of CatC (Fig. 1E-H). At 7 months of age, the expression of both CysF and 15 

CatC was reduced. However, the reduction in CysF mRNA expression seemed more rapid 16 

than that of CatC (Fig. 1I-N); thus, in some regions, CysF expression had mostly disappeared 17 

(Fig. 1M) while CatC expression continued (Fig. 1N). From these results we concluded that 18 

CysF expression starts earlier than CatC, when demyelination is ongoing, but terminates its 19 

expression earlier than CatC in Plp4e/- mice. CysF and CatC were shown to be lysosomal 20 

proteins in a cell line of human leukemic monocyte lymphoma, U937, and in hypoxic–21 

ischemic brains (Hamilton et al., 2008; Koike et al., 2013). We attempted to co-stain the same 22 

section for both CatC and CysF, which are expressed in lysosomes, but PLP4e/- transgenic 23 

mice have lipofuscin granules which auto-fluoresce in demyelinating lesions (data not 24 
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shown). This strong fluorescence prevented us from detecting proteins in demyelinating brain 1 

tissue from Plp4e/- mice by immuno-fluorescence. 2 

Thus, in order to determine if CysF protein colocalizes with CatC protein in microglia, 3 

we utilized mouse primary cultured microglia. We found that CysF did colocalize with CatC 4 

(Fig. 1O), suggesting that CatC activity can be inhibited by CysF in microglia.  5 

 6 

Generation of STOP-tetO knockin mice to manipulate CatC and CysF gene expression 7 

 To study the role of CatC and CysF in demyelinating diseases, we generated 8 

transgenic mouse lines in which CatC or CysF expression can be manipulated using the 9 

FAST system we established previously (Tanaka et al., 2010). We crossed those mouse 10 

strains with Plp4e/- mice to examine the roles of CatC and CysF during the 11 

remyelinating/demyelinating stages using the FAST system. The STOP sequence in the 12 

FAST system forces termination of transcription (Supplement 1, 2); thus, homozygous mice 13 

bearing the STOP-tetO knockin alleles in the absence of the tTA allele (CatCSTOP-tetO/STOP-tetO, 14 

CysFSTOP-tetO/STOP-tetO) should behave as knockdown (KD)/knockout (KO) mice because of the 15 

STOP sequence. In this study, we refer to CatCSTOP-tetO/STOP-tetO and CysFSTOP-tetO/STOP-tetO as 16 

CatCKD and CysFKD, respectively. 17 

 In adult wild type mice, CatC protein and mRNA were found only in the CA2 region 18 

of the hippocampus and choroid plexus (Fig. 2A, B), and were not found in any other regions 19 

of the brain. In the CatCKD mouse, CatC mRNA and protein were suppressed by the STOP 20 

sequence, as expected (Fig 2C, D). CysF was not found in any area of the brain at either 21 

postnatal developmental stages or in adults (data not shown, Ma et al., 2011) but CysF 22 

mRNA and protein were induced during the acute demyelination and active remyelination 23 

process in Plp4e/- mice at 4 months of age (Fig. 2E, F, H, I). CysFKD mice on the Plp4e/- 24 

background at 4 months of age were devoid of CysF mRNA, as expected (Fig. 2G, J). 25 
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 1 

Generation of Cathepsin C or Cystatin F overexpression in mouse microglia using the 2 

FAST system 3 

 Since we found that CatC and CysF colocalized within microglia (Fig. 1O), we 4 

generated microglia-selective CatC and CysF overexpressing mice as a gain-of-function 5 

study. The overexpression of CatC (CatCOE; CatCSTOP-tetO/+:: Iba1-tTA) or CysF (CysFOE; 6 

CysFSTOP-tetO/+:: Iba1-tTA) was achieved by crossing respective STOP-tetO knockin mice 7 

with the microglia-selective tTA-expressing line Iba1-tTA. 8 

 To confirm the tTA-mediated CysF overexpression, brains from postnatal day 21 9 

(P21) mice were examined. Iba1-tTA mice did not show any CysF expression (Fig. 3A, E), 10 

whereas CysFOE mice showed abundant CysF mRNA (Fig. 3B) and protein (Fig. 3F) 11 

without increasing the number of microglia (Fig. 3C, D). In these mice, all CysF mRNA-12 

positive cells were also Iba1-positive ([CysF+Iba1+] / [total Iba1+] ≃90%; Fig. 3G). 13 

 CysF is known to be glycosylated (Ni et al., 1998), and both the monomeric and 14 

slowly migrating glycosylated forms were detected (Fig. 3I), consistent with a report by 15 

Hamilton et al. (Hamilton et al., 2008). However, the ratio of CysF mRNA and Iba1 double-16 

positive cells to the total number of Iba1-positive cells in 11-week-old CysFOE mice 17 

([CysF+Iba1+]/[total Iba1+] ≃ 50%; Fig. 3H) was greatly decreased compared to that in P21 18 

mice (Fig. 3G). Thus, either CysF expression driven by the tTA-tetO system was shut down, 19 

or the level of CysF mRNA derived from this system was below the limit of detection by ISH 20 

through an unknown mechanism.  21 

 In wild type mice, CatC is expressed mainly in the CA2 region of the hippocampus 22 

and choroid plexus (Fig. 2A, B). In CatCOE mice, CatC-overexpressing Iba1-positive cells 23 

were observed throughout the entire brain (about 70% of cells were CatC+Iba1+; Fig. 4A-C). 24 

The enzymatic activity of CatC in the brain of CatCOE mice was examined using a specific 25 
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substrate (H-Gly-Arg--naphthylamide) and was found to be greatly increased compared to 1 

controls, indicating that induced CatC protein has enzymatic activity (Fig. 4D).  2 

From these crosses, we succeeded in obtaining CysFKD, CatCKD and CatCOE mice. 3 

Unfortunately, the CysFOE mice generated using this recombination system did not show the 4 

gene expression expected to be derived from the tTA-tetO system. Therefore, the use of the 5 

CysFOE mice was omitted from this study. 6 

 7 

Phenotypic evaluation in mice with CysF or CatC genetic manipulations 8 

 In these mice in which we manipulated the expression of microglial genes, it was 9 

necessary to evaluate the differences between WT and CysFKD, CatCKD or CatCOE mice 10 

during adult stages. None of these transgenic lines showed any overt phenotypes or clinical 11 

symptoms, therefore we examined the specific microglial morphology in these mice. Given 12 

that adult mice are needed to evaluate demyelinated lesions, we used two-month-old mice for 13 

this experiment. In wild type mice, the microglial morphology, as detected by Iba-1 IHC, 14 

showed a normal “resting” shape, i.e. small cell body and numerous very thin and highly 15 

branched processes (Fig. 5A). In CatCKD mice, the morphology of the microglia remained in 16 

the resting stage, similar to wild type mice (Fig. 5A, B). In contrast, in both the CysFKD (Fig. 17 

5C) and CatCOE mice (Fig. 5D), the “activated” microglia phenotype was found, 18 

characterized by shorter and thicker processes with a swollen cell body. Previous studies 19 

showed that the CysF knockout mice do not show any clinical symptoms or behavioral 20 

abnormalities (Mouse genomic informatics, MGI, 2008). However, our results from this 21 

histological examination suggested abnormal microglial activation in adult CysFKD mice, 22 

and that CysF is necessary for the resting microglial phenotype at two months of age, even if 23 

the mRNA expression may somehow be below the detection limit by ISH in WT mice. 24 

 25 
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CysF deprivation enhanced demyelination in Plp4e/- mice. 1 

 In Plp4e/- mice at 4 months of age, when simultaneous myelin degeneration and 2 

regeneration is occurring, both CysF and CatC are expressed in the white matter of 3 

demyelinating lesions (Fig. 1E-H and O). To explore the role of CysF during this active 4 

remyelinating phase in Plp4e/- mice, we crossed Plp4e/- and CysFSTOP-tetO mice to generate 5 

CysFKD::Plp4e/- mice. We stained brain tissues from 4-month-old CysFKD::Plp4e/- and 6 

control (CysFSTOP-tetO/+::Plp4e/-) mice for CNPase and quantified the CNPase-positive area. 7 

The CNPase staining from a single cerebellar folium in parasagittal sections is shown in Fig.6 8 

(D), and was measured as described in the Materials and Methods. CysFKD::Plp4e/- mice 9 

showed more severe myelin loss compared to control mice (Fig. 6 A-C). The percentage of 10 

the CNPase-stained area in a single cerebellar folium from CysFKD::Plp4e/- mice was 11 

significantly decreased (5.15 ± 0.86%, n = 6) compared to the control group (10.63 ± 0.49%, 12 

n = 5; Fig. 6C). We also examined the olfactory tracts and found that 4-month-old 13 

CysFKD::Plp4e/- mice also showed a significant decrease (37.78 ± 1.52%, n =6) compared to 14 

the control group (50.05 ± 1.42%, n = 5). These results demonstrated that genetic 15 

manipulation to eliminate CysF results in aggravated early phase demyelination in the Plp4e/- 16 

mouse model of chronic demyelination. This suggests that CysF is important for maintaining 17 

myelin regeneration. 18 

 19 

CatC overexpression also enhanced demyelination in Plp4e/- mice. 20 

 Given that the increase in CatC activity resulting from CysF deprivation exacerbated 21 

demyelination (Fig. 1I-N, Fig. 5 A, C, and Fig. 6A-C), the overexpression of the CatC gene 22 

in Plp4e/- mice should result in a similar phenotype to CysFKD mice, i.e. enhanced 23 

demyelination. Thus, CatCOE::Plp4e/- mice were analyzed to examine the effect of microglial 24 

CatC overexpression on demyelination. CatCOE::Plp4e/- mice showed more severe myelin 25 
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loss at 4 months of age (when we examined the effect of CysFKD on demyelination in 1 

CysFKD::Plp4e/- mice), and many CatCOE::Plp4e/- mice died by 4 months of age (data not 2 

shown). Thus, we chose an earlier time point at 2.5 months of age to analyze CatCOE::Plp4e/- 3 

and Plp4e/- mice for the effects of CatCOE on demyelination. We found more severe myelin 4 

loss in CatCOE::Plp4e/- mice compared to the Plp4e/- mice used here as controls (Fig. 7A-B). 5 

We quantified the CNPase-stained area in a single cerebellar folium in parasagittal sections, 6 

as shown in Fig. 6D. The percentage of the CNPase-stained area in the CatCOE::Plp4e/- mice 7 

was significantly decreased (5.10 ± 0.36%, n = 8) compared to the control group (7.86 ± 8 

0.64%, n = 4; Fig. 7C). We also examined the olfactory tracts and found that, at 2.5 months 9 

of age, CatCOE::Plp4e/- mice showed a significant decrease (43.42 ± 3.09%, n =8) compared 10 

to control Plp4e/- mice (63.65 ± 2.54%, n = 4). Furthermore, we performed electron 11 

microscopic (EM) imaging of the cerebellum from CatCOE::Plp4e/- and Plp4e/- mice (Fig. 7D 12 

and E). We observed massive myelin loss in CatCOE::Plp4e/- mice at 2.5 months of age, 13 

while myelin was maintained in Plp4e/- mice of the same age (Fig. 7A and B). This is 14 

consistent with the results obtained using the CysFKD mice. These results indicate that the 15 

balance between CatC and CysF is very important for maintaining myelin regeneration 16 

during the early phase of demyelinating diseases. 17 

 18 

CatC knockdown rescued the chronic demyelinating lesions in Plp4e/- mice. 19 

 Given that CatCOE and CysFKD in Plp4e/- mice showed exaggerated demyelination, 20 

we sought to reverse the balance of CatC/CysF expression using CatCKD mice. To examine 21 

the impact of CatC knockdown on demyelination, we used CatCKD::Plp4e/- mice and 22 

CatCSTOP-tetO/+::Plp4e/- mice as controls, and analyzed the phenotypes of these mice at 4, 6 and 23 

8 months of age. There were no significant differences in the CNPase-positive areas between 24 

CatCKD::Plp4e/- and CatCSTOP-tetO/+::Plp4e/- mice at 4 months of age when active 25 
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remyelination is ongoing (data not shown). CatCSTOP-tetO/+::Plp4e/- mice gradually lost myelin 1 

in this region at 6 months of age (Fig. 8A) and clearly showed severe myelin loss at 8 months 2 

of age (Fig. 8C). However, CatCKD::Plp4e/- mice had substantially more remaining myelin 3 

compared to CatCSTOP-tetO/+::Plp4e/- mice (Fig. 8A-D). We quantified the CNPase-stained area 4 

in a single cerebellar folium from parasagittal sections as shown in Fig. 6 and 7. The 5 

percentage of the CNPase-stained areas in CatCKD::Plp4e/- mice (14.11 ± 1.25%, n = 9) was 6 

significantly higher than in CatCSTOP-tetO/+::Plp4e/- mice (7.90 ± 2.97%, n = 3) at 8 months of 7 

age (Fig. 8F), while no significant differences were found at 6 months of age (Fig. 8E; n=3 8 

mice each per group). We also examined the olfactory tracts and found that CatCKD::Plp4e/- 9 

mice at 8 months of age showed a significantly higher percentage of stained area (47.62 ± 10 

5.27%, n= 9) compared to control CatCSTOP-tetO/+::Plp4e/- mice (21.80 ± 1.37%, n=3). To 11 

confirm this result, we performed EM imaging of these mice. More myelinated axons were 12 

observed in CatCKD::Plp4e/- mice (Fig. 8 H) compared to controls (Fig. 8 G). We also 13 

quantified the number of myelinated axons for each diameter range. We found that 14 

CatCKD::Plp4e/- mice at 8 months of age had an increased number of myelinated axons with 15 

larger diameters (myelinated axon diameter between 1 and 3.5 m) compared to WT mice of 16 

the same age (Fig. 9A). We also found that CatCKD::Plp4e/- mice had a higher average g-ratio 17 

compared to WT mice, indicating that CatCKD::Plp4e/- mice had thinner myelin sheaths and 18 

that CatCKD promoted remyelination in Plp4e/- mice (Fig. 9B). These results show that the 19 

balance between CatC and CysF is an important factor controlling the myelin regeneration 20 

process even during late stages of chronic demyelinating diseases. During the chronic 21 

demyelinating phase in which CatC expression dominates CysF expression, CatC deprivation 22 

can rescue Plp4e/- mice from severe demyelination. 23 

24 
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Discussion 1 

 In chronic MS lesions, the remyelination process is impaired resulting in 2 

demyelinated lesions (Chang et al., 2002; Kuhlmann et al., 2008; Noseworthy, 1999). The 3 

most crucial question is what factors govern the oligodendrocyte precursor recruitment and 4 

oligodendrocyte differentiation phases of remyelination, and whether misregulation of any of 5 

these factors can account for remyelination failure. Previous studies have identified several 6 

pathways with the potential to have therapeutic efficacy (Fancy et al., 2010). We had 7 

previously reported that microglia express CysF only during the active remyelinating stage 8 

(at 4-6 months) and that downregulation of CysF expression indicates the cessation of 9 

remyelination in demyelinating regions (Ma et al., 2011). CysF is a specific inhibitor of CatC, 10 

and CatC mediates the generation of pro-inflammatory cytokines such as tumor necrosis 11 

factor- (TNF-) which is highly toxic to oligodendrocytes, and interleukin 1- (IL-1) a 12 

remyelination promoting factor (Adkison et al., 2002; Hamilton et al., 2008; Mason et al. 13 

2001, McLaurin et al., 1995; Ye and D’Ercole, 1999). Thus, CysF could be one of the factors 14 

specifically influencing differentiation and/or survival. Here, we studied the roles of CatC 15 

and CysF in mouse models in which it was possible to manipulate the expression of CatC and 16 

CysF. 17 

This study demonstrated that the CysF/CatC system is one possible mechanism that 18 

may inhibit myelin regeneration. We found activated microglia in adult CysFKD and 19 

CatCOE mice. However, CatC knockdown mice did not show any overt phenotypes. In 20 

CatCOE and CysFKD mice, the increase in CatC and deprivation of its inhibitor CysF might 21 

increase CatC activity in microglia causing the microglia themselves to become activated. 22 

Maintenance of the brain environment is very important for the recovery process from injury, 23 

diseases or infection; this includes the phagocytosis of debris and secretion of growth signals, 24 

cytokines and other factors. Microglial cells monitor the wellbeing of their environment and 25 
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are able to respond to signs of homeostatic disturbance with a program of supportive and 1 

protective activity, to safeguard innate defense mechanisms, or to assist in specific immune 2 

responses (Hanisch, 2002; Kotter et al, 2006; Lampron et al., 2015; Stollg and Jander, 1999). 3 

Activated microglia have been found to persist in chronic demyelinating lesions (Tanuma et 4 

al., 2006; Taupin et al., 1997). It seems that changes in the normal levels of CatC or CysF 5 

beyond physiological levels cause a disturbance in the brain homeostasis and the activation of 6 

microglia. It is possible that CatC and CysF could send crucial signals that alert the CNS to 7 

prepare microglia which can respond to any type of CNS disturbance. 8 

In Plp4e/- mice, CysF and CatC had similar expression patterns during the active 9 

remyelinating phase at 4 months of age, shown in Fig. 1E-H. However, CysF was found to be 10 

expressed earlier than CatC during active demyelination and remyelination (Fig.1 A-D) when 11 

it dominated CatC expression prior to the emergence of chronic lesions (Fig. 1A-H). During 12 

this phase, the myelin regeneration process is very important for maintaining the myelin 13 

sheath; this is similar to the early phase of MS which shows relapse-remission symptoms 14 

(Niehaus et al., 2000). At 2 months of age, Plp4e/- mice show neither paralysis nor muscular 15 

dystrophy defects, but do show signs of nerve conduction disturbance (Tanaka et al., 2006) 16 

and tonic seizures similar to the early symptoms of MS (Kelley and Rodriguez, 2009). CysF 17 

induction in microglia is dependent on the phagocytosis of compact myelin membranes (Ma 18 

et al., 2011), thus CysF might have a role in supporting the myelin regeneration process. Here 19 

we showed that CysF knockdown in Plp4e/- mice resulted in exaggerated demyelination at 20 

earlier phases of demyelination. CysF inhibits CatC protease activity and disrupts 21 

downstream signals that can cause disturbance in the myelin regeneration process. (Hamilton 22 

et al., 2008; Irmler et al., 1995; Pham and Ley, 1999). The balance between CatC and CysF 23 

expression also seems to play a critical role in myelin regeneration during the early phase of 24 

chronic demyelinating diseases. This conclusion was confirmed by CatC overexpression in 25 
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microglia showing severe demyelination at a very early phase of chronic demyelination. In 1 

the early phase of chronic demyelinating disease, CysF should play a dominant role in 2 

supporting myelin regeneration by interfering with CatC function. In this study, we showed 3 

only a lobe of the cerebellum and olfactory tracts for statistical analysis, although Plp4e/- mice 4 

undergo demyelination throughout the entire CNS. While demyelination does not typically 5 

proceed uniformly and shows some regional variation, even among individuals, the 6 

demyelination we observed in the cerebellum and olfactory tracts was relatively constant. 7 

Therefore, we chose these regions for our statistical analysis.  8 

During the late phase of chronic demyelinating disease, CatC was found to dominate 9 

CysF and full activation of microglia is expected. This could cause impaired myelin 10 

regeneration and the appearance of naked axons in the Plp4e/- mice (Kagawa et al., 1994). We 11 

found that CatC knockdown resulted in more intact myelin in the late phase of chronic 12 

demyelination. This provides strong evidence that CatC is one of the key factors that induces 13 

demyelination. The conclusions drawn from this study demonstrated that the balance between 14 

CatC and CysF expression plays an important role in chronic demyelinating disease. 15 

16 
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Legends 1 

Figure 1. The expression patterns of cystatin F and cathepsin C are similar during the 2 

active remyelinating phase but not in chronic lesions. 3 

In situ hybridization for cystatin F (A, C, E, G, I, K, M) and cathepsin C (B, D, F, H, J, L, N) 4 

was performed on brain tissues from Plp4e/- mice at 2 (A-D), 4 (E-H) and 7 (I-N) months of 5 

age. (A), (B), (E), (F), (I) and (J) are magnified images of the areas outlined in black from (C), 6 

(D), (G), (H), (K) and (L), respectively. (M) and (N) are magnified images of the areas 7 

outlined in red in (I) and (J), respectively. Immunocytochemistry demonstrated that CatC 8 

(shown in red) and CysF (shown in green) were co-localized in primary cultured microglial 9 

cells (O). Scale bars: A, 200 m; C, 600 m; N, 100 m; O, 20 m. 10 

 11 

Figure 2. Successful knockdown of Cathepsin C and Cystatin F in homozygous STOP-12 

tetO mice. 13 

Adult wild type and CatCKD mice were analyzed for CatC mRNA (A, C) and CatC protein 14 

expression (B, D). Four-month-old Plp4e/- mice were analyzed for CysF mRNA (E, H) and 15 

CysF protein expression (F, I). Four-month-old CysFKD::Plp4e/- mice were analyzed for 16 

CysF mRNA expression (G, J). H, I and J are magnified images of the corpus callosum 17 

region in E, F and G, respectively. Scale bars: 100 µm for A, C, E, G; 50 µm for B, D, F, H, I, 18 

J. 19 

 20 

Figure 3. Successful overexpression of Cystatin F in Iba1-positive microglia. 21 

In situ hybridization for CysF and c-fms mRNA, and immunohistochemistry for CysF were 22 

performed on spinal cord sections from Iba1-tTA (A, C, E) and CysFOE mice (B, D, F). The 23 

inset in (F) is a magnified image of the area outlined in black and indicated by a red 24 

arrowhead. Double staining of CysF mRNA by in situ hybridization and Iba1 by 25 
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immunohistochemistry was performed on thoracic spinal cords from CysFOE mice at 1 

postnatal day 21 (P21) (G) and at 11 weeks (H). The inset in (G) is a magnified image of the 2 

cell outlined in black. Brain lysates from wild type and CysFOE mice were used for cystatin 3 

F immunoblotting (I). The arrow indicates monomers of cystatin F and the asterisk indicates 4 

the glycosylated slow migrating forms. Scale bars: D, 500 m; F, 50 m; H, 200 m. 5 

 6 

Figure 4. Successful overexpression of Cathepsin C in Iba1-positive microglia. 7 

(A-C) CatC and Iba1 are shown in red and green, respectively, in the brain of a CysFOE 8 

(CatCSTOP-tetO/+::Iba1-tTA) mouse. CatCOE and CatCSTOP-tetO/+ mice were analyzed for CatC 9 

activity using a specific substrate for cathepsin C (D). The control wells contained buffer and 10 

protease substrates only. The florescence signal was measured from time 0 when brain lysate 11 

supernatants from CatCOE and CatCSTOP-tetO/+ mice were added. Scale bars: A-C, 20 m. 12 

 13 

Figure 5. Morphological analysis of microglia in CatC and CysF genetically manipulated 14 

mice. 15 

Wild type (A), CatCKD (B), CysFKD (C) and CatCOE (D) mice at two months of age were 16 

analyzed for microglial morphology in the cerebellum. Parasagittal brain cryosections were 17 

used for Iba1 immunohistochemistry to visualize microglial morphology. Scale bar in D, 20 18 

m. 19 

 20 

Figure 6. CysF knockdown worsened the demyelination in Plp4e/- mice. 21 

CysFSTOP-tetO/+::Plp4e/- (A) and CysFKD::Plp4e/- (B) mice at 4 months of age were analyzed for 22 

myelin loss in the brain by staining for CNPase. CysFSTOP-tetO/+::Plp4e/- was used as the 23 

control. (C) The percentage of the myelin stained area was quantified by densitometry 24 

analysis and the differences between the groups are represented in the graph: CysFSTOP-25 
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tetO/+::Plp4e/- (10.63 ± 0.49%, n=5), CysFKD::Plp4e/- (5.15 ± 0.86%, n=6); *p < 0.05 compared 1 

to the control group. (D) Schematic of mouse parasagittal sections. The region indicated by 2 

the black dashed line represents the area that was quantified. Scale bars: A and B, 50 m. 3 

 4 

Figure 7. CatC overexpression induced earlier demyelination in Plp4e/- mice. 5 

Two-month-old Plp4e/- (A) and CatCOE::Plp4e/- (B) transgenic mice were assayed for myelin 6 

in the brain. The percentage of the CNPase-stained area was quantified by densitometry 7 

analysis and differences between the groups are represented in the graph (C): Plp4e/- (7.86 ± 8 

0.64%, n=4), CatCOE::Plp4e/- (5.10 ± 0.36%, n=8). (D, E) Electron microscopic images of 9 

the cerebellar lobe region shown in Fig. 6D from Plp4e/- (D) and CatCOE::Plp4e/- (E) mice at 10 

2.5 months of age (*p < 0.05 compared to the control group). Scale bars: A-B, 50 m; D-E, 11 

10 m. 12 

 13 

Figure 8. CatC knockdown reduced demyelination in Plp4e/- mice. 14 

CatCSTOP-tetO/+::Plp4e/- (A and C) and CatCKD::Plp4e/- (B and D) mice were analyzed for the 15 

amount of myelin in the brain at 6 and 8 months of age. CatCSTOPtetO/+::Plp4e/- mice were used 16 

as controls. The percentage of the myelin stained area was quantified by densitometry 17 

analysis and the differences between the groups are represented in the graphs (E and F): 18 

CatCSTOP-tetO/+::Plp4e/- (7.90 ± 2.97%, n=3), CatCKD::Plp4e/- (14.11 ± 1.25%, n=9). (G, H) 19 

Electron microscopic images of the cerebellar lobe region shown in Fig. 6D from CatCSTOP-20 

tetO/+::Plp4e/- and CatCKD::Plp4e/- mice at 8 months of age (*p < 0.05 compared to the control 21 

group). Scale bars: A-D, 200 m; G-H, 10 m.  22 

 23 

Figure. 9 Cathepsin C knockdown promoted remyelination in Plp4e/- mice.  24 
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(A) Distribution of myelinated axon diameters measured at the cerebellar lobe region shown 1 

in Fig. 6D from WT and CatCKD::Plp4e/- mice at 8 months of age. The vertical axis indicates 2 

the number of myelinated axons and the horizontal axis indicates the myelinated axon 3 

diameter range. (B) Axon diameter and g-ratio distribution measured at the cerebellar lobe 4 

from WT and CatCKD::Plp4e/- mice at 8 months of age. The vertical axis indicates axon 5 

diameter and the horizontal axis indicates the g-ratio. 6 

 7 

Supplementary 1. Construction of CysF STOP-tetO mice and Southern blotting. 8 

(A) The upper figure shows a schematic of the wild type genome, the targeting vector and 9 

CysF STOP-tetO allele structures, and the AflII restriction sites; the 5’ probe position is 10 

indicated by a black bar. Black arrows represent primer positions. Open triangles represent 11 

loxP sites. Filled triangles represent FRT sites. Neo is the PGK-EM7-NEO minigene. STOP 12 

is the cassette containing elements designed to terminate both transcription and translation. 13 

ATG represents the translation initiation site. tetO is the cassette containing the tetracycline 14 

operon site and CMV minimal promoter. The lower figure shows the Southern blotting 15 

results from genomic DNA of wild type, heterozygote and homozygote CysF STOP-tetO 16 

mice. (B) The upper figure shows a schematic of the wild type, targeting vector and CysF 17 

STOP-tetO allele structures, as well as the 3’ probe position, and XbaI and EcoRV restriction 18 

sites. The lower figure shows the Southern blotting results from genomic DNA of wild type, 19 

heterozygote and homozygote CysF STOP-tetO mice. 20 

 21 

Supplementary 2. Construction of CatC STOP-tetO mice and Southern blotting. 22 

(A) The upper figure shows a schematic of the wild type genome, the targeting vector and 23 

CatC STOP-tetO allele structures, as well as the 5’ probe position and SpeI restriction sites. 24 

The symbols are the same as in Supplementary 1. The lower figure shows the Southern 25 
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blotting results from genomic DNA of wild type, heterozygote and homozygote CatC STOP-1 

tetO mice. (B) The upper figure shows a schematic of the wild type genome, the targeting 2 

vector and CatC STOP-tetO allele structures, as well as the 3’ probe position, and PstI and 3 

EcoRI restriction sites. The lower figure shows the Southern blotting results from genomic 4 

DNA of wild type, heterozygote and homozygote CatC STOP-tetO mice. 5 
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