544 research outputs found

    Dynamic ATR-FTIR and TEM study of the resin-dentin interface in Reactmer Bond

    Get PDF
    Abstract no. 895published_or_final_versio

    Genome landscapes and bacteriophage codon usage

    Get PDF
    Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonmous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa and L. lactis as their primary host. We introduce the concept of a `genome landscape,' which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such a GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference

    Predicting Gene Expression Level from Relative Codon Usage Bias: An Application to Escherichia coli Genome

    Get PDF
    We present an expression measure of a gene, devised to predict the level of gene expression from relative codon bias (RCB). There are a number of measures currently in use that quantify codon usage in genes. Based on the hypothesis that gene expressivity and codon composition is strongly correlated, RCB has been defined to provide an intuitively meaningful measure of an extent of the codon preference in a gene. We outline a simple approach to assess the strength of RCB (RCBS) in genes as a guide to their likely expression levels and illustrate this with an analysis of Escherichia coli (E. coli) genome. Our efforts to quantitatively predict gene expression levels in E. coli met with a high level of success. Surprisingly, we observe a strong correlation between RCBS and protein length indicating natural selection in favour of the shorter genes to be expressed at higher level. The agreement of our result with high protein abundances, microarray data and radioactive data demonstrates that the genomic expression profile available in our method can be applied in a meaningful way to the study of cell physiology and also for more detailed studies of particular genes of interest

    Translational selection on SHH genes

    Get PDF
    Codon usage bias has been observed in various organisms. In this study, the correlation between SHH genes expression in some tissues and codon usage features was analyzed by bioinformatics. We found that translational selection may act on compositional features of this set of genes

    A Novel Bioinformatics Strategy for Function Prediction of Poorly-Characterized Protein Genes Obtained from Metagenome Analyses

    Get PDF
    As a result of remarkable progresses of DNA sequencing technology, vast quantities of genomic sequences have been decoded. Homology search for amino acid sequences, such as BLAST, has become a basic tool for assigning functions of genes/proteins when genomic sequences are decoded. Although the homology search has clearly been a powerful and irreplaceable method, the functions of only 50% or fewer of genes can be predicted when a novel genome is decoded. A prediction method independent of the homology search is urgently needed. By analyzing oligonucleotide compositions in genomic sequences, we previously developed a modified Self-Organizing Map β€˜BLSOM’ that clustered genomic fragments according to phylotype with no advance knowledge of phylotype. Using BLSOM for di-, tri- and tetrapeptide compositions, we developed a system to enable separation (self-organization) of proteins by function. Analyzing oligopeptide frequencies in proteins previously classified into COGs (clusters of orthologous groups of proteins), BLSOMs could faithfully reproduce the COG classifications. This indicated that proteins, whose functions are unknown because of lack of significant sequence similarity with function-known proteins, can be related to function-known proteins based on similarity in oligopeptide composition. BLSOM was applied to predict functions of vast quantities of proteins derived from mixed genomes in environmental samples

    Does codon bias have an evolutionary origin?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a 3-fold redundancy in the Genetic Code; most amino acids are encoded by more than one codon. These synonymous codons are not used equally; there is a Codon Usage Bias (CUB). This article will provide novel information about the origin and evolution of this bias.</p> <p>Results</p> <p>Codon Usage Bias (CUB, defined here as deviation from equal usage of synonymous codons) was studied in 113 species. The average CUB was 29.3 Β± 1.1% (S.E.M, n = 113) of the theoretical maximum and declined progressively with evolution and increasing genome complexity. A Pan-Genomic Codon Usage Frequency (CUF) Table was constructed to describe genome-wide relationships among codons. Significant correlations were found between the number of synonymous codons and (i) the frequency of the respective amino acids (ii) the size of CUB. Numerous, statistically highly significant, internal correlations were found among codons and the nucleic acids they comprise. These strong correlations made it possible to predict missing synonymous codons (wobble bases) reliably from the remaining codons or codon residues.</p> <p>Conclusion</p> <p>The results put the concept of "codon bias" into a novel perspective. The internal connectivity of codons indicates that all synonymous codons might be integrated parts of the Genetic Code with equal importance in maintaining its functional integrity.</p

    HEG-DB: a database of predicted highly expressed genes in prokaryotic complete genomes under translational selection

    Get PDF
    The highly expressed genes database (HEG-DB) is a genomic database that includes the prediction of which genes are highly expressed in prokaryotic complete genomes under strong translational selection. The current version of the database contains general features for almost 200 genomes under translational selection, including the correspondence analysis of the relative synonymous codon usage for all genes, and the analysis of their highly expressed genes. For each genome, the database contains functional and positional information about the predicted group of highly expressed genes. This information can also be accessed using a search engine. Among other statistical parameters, the database also provides the Codon Adaptation Index (CAI) for all of the genes using the codon usage of the highly expressed genes as a reference set. The β€˜Pathway Tools Omics Viewer’ from the BioCyc database enables the metabolic capabilities of each genome to be explored, particularly those related to the group of highly expressed genes. The HEG-DB is freely available at http://genomes.urv.cat/HEG-DB

    Primary skin fibroblasts as a model of Parkinson's disease

    Get PDF
    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues

    Prospective blind comparative clinical study of two point fixation of zygomatic complex fracture using wire and mini plates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The zygomatic maxillary complex (ZMC) fractures are one of the most frequent injuries of the facial skeleton due to its position and facial contour. Assaults, road traffic accidents and falls are the principal etiologic factors that may cause fractures of zygomatic bone. The different fixation methods are applied to treat the zygomatic bone fractures, with many more classifications which have been described in the literature for the ease of management. The type of the fracture, its severity and associated facial fractures usually interferes the treatment modality.</p> <p>Purpose of study</p> <p>The aim of this paper is to show the results of 18yrs prospective blind comparative study using wire and plate osteosynthesis which needed open reduction and internal fixation involving Type II to Type IV Spissel and Schroll ZMC fractures.</p> <p>Materials and methods</p> <p>Total 80 cases included in the study out of 1780 ZMC cases which were treated using wire and plate osteosynthesis over a period of 18 yrs, involving only Type II to Type IV Spissel and Schroll ZMC fractures. Other types excluded from study to prevent observer bias. All the fixations carried out through Standard Dingman's incision using stainless steel 26 gauze wire and titanium 1.5 mm mini plate system under general anesthesia by single maxillofacial surgeon and evaluated by another maxillofacial surgeon who is blinded for surgical procedure after 2 and 4 wks of follow-up for facial symmetry, wound healing, functional assessment (mouth opening, diplopia), and sensory disturbance. All the data tabulated in Excel software (Microsoft) for statistical analysis. P-value calculated to know the Significance of treatment modality in all aspects.</p> <p>Results</p> <p>Result shows no significant p-values indicating both the operating techniques are equally efficient in the surgical management of ZMC fracture.</p> <p>Conclusion</p> <p>Osteosynthesis by mini plates is simple, logical and effective treatment compared to wire osteosynthesis in regard to stability of fracture fragments. Wire osteosynthesis will be helpful in emergency surgeries or where the mini plates are not available. Even though the wire osteosynthesis is economical compared to mini plate fixation; but the time and skill is required for fixation of wires.</p

    Minimization of Biosynthetic Costs in Adaptive Gene Expression Responses of Yeast to Environmental Changes

    Get PDF
    Yeast successfully adapts to an environmental stress by altering physiology and fine-tuning metabolism. This fine-tuning is achieved through regulation of both gene expression and protein activity, and it is shaped by various physiological requirements. Such requirements impose a sustained evolutionary pressure that ultimately selects a specific gene expression profile, generating a suitable adaptive response to each environmental change. Although some of the requirements are stress specific, it is likely that others are common to various situations. We hypothesize that an evolutionary pressure for minimizing biosynthetic costs might have left signatures in the physicochemical properties of proteins whose gene expression is fine-tuned during adaptive responses. To test this hypothesis we analyze existing yeast transcriptomic data for such responses and investigate how several properties of proteins correlate to changes in gene expression. Our results reveal signatures that are consistent with a selective pressure for economy in protein synthesis during adaptive response of yeast to various types of stress. These signatures differentiate two groups of adaptive responses with respect to how cells manage expenditure in protein biosynthesis. In one group, significant trends towards downregulation of large proteins and upregulation of small ones are observed. In the other group we find no such trends. These results are consistent with resource limitation being important in the evolution of the first group of stress responses
    • …
    corecore