65 research outputs found

    Transglutaminase 2 limits the extravasation and the resultant myocardial fibrosis associated with factor XIII-A deficiency

    Get PDF
    Background and aims Transglutaminase (TG) 2 and Factor (F) XIII-A have both been implicated in cardiovascular protection and repair. This study was designed to differentiate between two competing hypotheses: that TG2 and FXIII-A mediate these functions in mice by fulfilling separate roles, or that they act redundantly in this respect. Methods Atherosclerosis was assessed in brachiocephalic artery plaques of fat-fed mixed strain apolipoprotein (Apo)e deficient mice that lacked either or both transglutaminases. Cardiac fibrosis was assessed both in the mixed strain mice and also in C57BL/6J Apoe expressing mice lacking either or both transglutaminases. Results No difference was found in the density of buried fibrous caps within brachiocephalic plaques from mice expressing or lacking these transglutaminases. Cardiac fibrosis developed in both Apoe/F13a1 double knockout and F13a1 single knockout mice, but not in Tgm2 knockout mice. However, concomitant Tgm2 knockout markedly increased fibrosis, as apparent in both Apoe/Tgm2/F13a1 knockout and Tgm2/F13a1 knockout mice. Amongst F13a1 knockout and Tgm2/F13a1 knockout mice, the extent of fibrosis correlated with hemosiderin deposition, suggesting that TG2 limits the extravasation of blood in the myocardium, which in turn reduces the pro-fibrotic stimulus. The resulting fibrosis was interstitial in nature and caused only minor changes in cardiac function. Conclusions These studies confirm that FXIII-A and TG2 fulfil different roles in the mouse myocardium. FXIII-A protects against vascular leakage while TG2 contributes to the stability or repair of the vasculature. The protective function of TG2 must be considered when designing clinical anti-fibrotic therapies based upon FXIII-A or TG2 inhibition

    A novel extracellular role for tissue transglutaminase in matrix-bound VEGF-mediated angiogenesis

    Get PDF
    The importance of tissue transglutaminase (TG2) in angiogenesis is unclear and contradictory. Here we show that inhibition of extracellular TG2 protein crosslinking or downregulation of TG2 expression leads to inhibition of angiogenesis in cell culture, the aorta ring assay and in vivo models. In a human umbilical vein endothelial cell (HUVEC) co-culture model, inhibition of extracellular TG2 activity can halt the progression of angiogenesis, even when introduced after tubule formation has commenced and after addition of excess vascular endothelial growth factor (VEGF). In both cases, this leads to a significant reduction in tubule branching. Knockdown of TG2 by short hairpin (shRNA) results in inhibition of HUVEC migration and tubule formation, which can be restored by add back of wt TG2, but not by the transamidation-defective but GTP-binding mutant W241A. TG2 inhibition results in inhibition of fibronectin deposition in HUVEC monocultures with a parallel reduction in matrix-bound VEGFA, leading to a reduction in phosphorylated VEGF receptor 2 (VEGFR2) at Tyr1214 and its downstream effectors Akt and ERK1/2, and importantly its association with b1 integrin. We propose a mechanism for the involvement of matrix-bound VEGFA in angiogenesis that is dependent on extracellular TG2-related activity

    Genome-wide association meta-analysis of spontaneous coronary artery dissection identifies risk variants and genes related to artery integrity and tissue-mediated coagulation

    Get PDF
    Spontaneous coronary artery dissection (SCAD) is an understudied cause of myocardial infarction primarily affecting women. It is not known to what extent SCAD is genetically distinct from other cardiovascular diseases, including atherosclerotic coronary artery disease (CAD). Here we present a genome-wide association meta-analysis (1,917 cases and 9,292 controls) identifying 16 risk loci for SCAD. Integrative functional annotations prioritized genes that are likely to be regulated in vascular smooth muscle cells and artery fibroblasts and implicated in extracellular matrix biology. One locus containing the tissue factor gene F3, which is involved in blood coagulation cascade initiation, appears to be specific for SCAD risk. Several associated variants have diametrically opposite associations with CAD, suggesting that shared biological processes contribute to both diseases, but through different mechanisms. We also infer a causal role for high blood pressure in SCAD. Our findings provide novel pathophysiological insights involving arterial integrity and tissue-mediated coagulation in SCAD and set the stage for future specific therapeutics and preventions

    Thioredoxin is involved in endothelial cell extracellular transglutaminase 2 activation mediated by celiac disease patient IgA

    Get PDF
    Purpose: To investigate the role of thioredoxin (TRX), a novel regulator of extracellular transglutaminase 2 (TG2), in celiac patients IgA (CD IgA) mediated TG2 enzymatic activation. Methods: TG2 enzymatic activity was evaluated in endothelial cells (HUVECs) under different experimental conditions by ELISA and Western blotting. Extracellular TG2 expression was studied by ELISA and immunofluorescence. TRX was analysed by Western blotting and ELISA. Serum immunoglobulins class A from healthy subjects (H IgA) were used as controls. Extracellular TG2 enzymatic activity was inhibited by R281. PX12, a TRX inhibitor, was also employed in the present study. Results: We have found that in HUVECs CD IgA is able to induce the activation of extracellular TG2 in a dose-dependent manner. Particularly, we noted that the extracellular modulation of TG2 activity mediated by CD IgA occurred only under reducing conditions, also needed to maintain antibody binding. Furthermore, CD IgA-treated HUVECs were characterized by a slightly augmented TG2 surface expression which was independent from extracellular TG2 activation. We also observed that HUVECs cultured in the presence of CD IgA evinced decreased TRX surface expression, coupled with increased secretion of the protein into the culture medium. Intriguingly, inhibition of TRX after CD IgA treatment was able to overcome most of the CD IgA-mediated effects including the TG2 extracellular transamidase activity. Conclusions: Altogether our findings suggest that in endothelial cells CD IgA mediate the constitutive activation of extracellular TG2 by a mechanism involving the redox sensor protein TRX

    Serotonylation of Vascular Proteins Important to Contraction

    Get PDF
    BACKGROUND:Serotonin (5-hydroxytryptamine, 5-HT) was named for its source (sero-) and ability to modify smooth muscle tone (tonin). The biological effects of 5-HT are believed to be carried out by stimulation of serotonin receptors at the plasma membrane. Serotonin has recently been shown to be synthesized in vascular smooth muscle and taken up from external sources, placing 5-HT inside the cell. The enzyme transglutaminase uses primary amines such as 5-HT to covalently modify proteins on glutamine residues. We tested the hypothesis that 5-HT is a substrate for transglutaminase in arterial vascular smooth muscle, with protein serotonylation having physiological function. METHODOLOGY/PRINCIPAL FINDINGS:The model was the rat aorta and cultured aortic smooth muscle cells. Western analysis demonstrated that transglutaminase II was present in vascular tissue, and transglutaminase activity was observed as a cystamine-inhibitable incorporation of the free amine pentylamine-biotin into arterial proteins. Serotonin-biotin was incorporated into alpha-actin, beta-actin, gamma-actin, myosin heavy chain and filamin A as shown through tandem mass spectrometry. Using antibodies directed against biotin or 5-HT, immunoprecipitation and immunocytochemistry confirmed serotonylation of smooth muscle alpha-actin. Importantly, the alpha-actin-dependent process of arterial isometric contraction to 5-HT was reduced by cystamine. CONCLUSIONS:5-HT covalently modifies proteins integral to contractility and the cytoskeleton. These findings suggest new mechanisms of action for 5-HT in vascular smooth muscle and consideration for intracellular effects of primary amines

    Transglutaminase 2 in cartilage homoeostasis: novel links with inflammatory osteoarthritis.

    Get PDF
    Transglutaminase 2 (TG2) is highly expressed during chondrocyte maturation and contributes to the formation of a mineralised scaffold by introducing crosslinks between extracellular matrix (ECM) proteins. In healthy cartilage, TG2 stabilises integrity of ECM and likely influences cartilage stiffness and mechanistic properties. At the same time, the abnormal accumulation of TG2 in the ECM promotes chondrocyte hypertrophy and cartilage calcification, which might be an important aspect of osteoarthritis (OA) initiation. Although excessive joint loading and injuries are one of the main causes leading to OA development, it is now being recognised that the presence of inflammatory mediators accelerates OA progression. Inflammatory signalling is known to stimulate the extracellular TG2 activity in cartilage and promote TG2-catalysed crosslinking of molecules that promote chondrocyte osteoarthritic differentiation. It is, however, unclear whether TG2 activity aims to resolve or aggravate damages within the arthritic joint. Better understanding of the complex signalling pathways linking inflammation with TG2 activities is needed to identify the role of TG2 in OA and to define possible avenues for therapeutic interventions

    Transglutaminase 6: a protein associated with central nervous system development and motor function.

    Get PDF
    Transglutaminases (TG) form a family of enzymes that catalyse various post-translational modifications of glutamine residues in proteins and peptides including intra- and intermolecular isopeptide bond formation, esterification and deamidation. We have characterized a novel member of the mammalian TG family, TG6, which is expressed in a human carcinoma cell line with neuronal characteristics and in mouse brain. Besides full-length protein, alternative splicing results in a short variant lacking the second β-barrel domain in man and a variant with truncated β-sandwich domain in mouse. Biochemical data show that TG6 is allosterically regulated by Ca(2+) and guanine nucleotides. Molecular modelling indicates that TG6 could have Ca(2+) and GDP-binding sites related to those of TG3 and TG2, respectively. Localization of mRNA and protein in the mouse identified abundant expression of TG6 in the central nervous system. Analysis of its temporal and spatial pattern of induction in mouse development indicates an association with neurogenesis. Neuronal expression of TG6 was confirmed by double-labelling of mouse forebrain cells with cell type-specific markers. Induction of differentiation in mouse Neuro 2a cells with NGF or dibutyryl cAMP is associated with an upregulation of TG6 expression. Familial ataxia has recently been linked to mutations in the TGM6 gene. Autoantibodies to TG6 were identified in immune-mediated ataxia in patients with gluten sensitivity. These findings suggest a critical role for TG6 in cortical and cerebellar neurons

    Identification and DNA Sequence Analysis of the fixX Gene of R. leguminosarum bv. Viciae

    No full text

    Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I. Changes in [4Fe-4S] cluster reduction potential and reactivity.

    No full text
    We have used site-directed mutagenesis to obtain two variants of Azotobacter vinelandii ferredoxin I (AvFdI), whose x-ray structures are now available. In the C20A protein, a ligand to the [4Fe-4S] cluster was removed whereas in the C24A mutant a free cysteine next to that cluster was removed. Like native FdI, both mutants contain one [4Fe-4S] cluster and one [3Fe-4S] cluster. The structure of C24A is very similar to that of native FdI, while the structure of C20A is rearranged in the region of the [4Fe-4S] cluster to allow it to use the free Cys-24 as a replacement ligand. Here we compare the properties of the native, C20A, and C24A proteins. Although all three proteins are O2 stable in vitro, the C20A protein is much less stable toward proteolysis than the other two in vivo. Spectroscopic results show that all three proteins exhibit the same general redox behavior during O2-oxidation and dithionite reduction. Electrochemical data show that the [3Fe-4S] clusters in all three proteins have the same pH-dependent reduction potentials (-425 mV versus SHE, pH 7.8), whereas the [4Fe-4S] cluster potentials vary over a approximately 150 mV range from -600 mV (C24A) to -647 mV (native) to -746 mV (C20A). Despite this variation in potential both the C20A and C24A proteins appear to be functional in vivo. Native FdI reacts with three equivalents of Fe(CN)3-(6) to form a paramagnetic species previously proposed to be a cysteinyl-disulfide radical. Neither the C20A nor the C24A variant undergoes this reaction, strongly suggesting that it involves the free Cys-24
    corecore