70 research outputs found

    Parity-controlled spin-wave excitations in synthetic antiferromagnets

    Get PDF
    We report in this study the current-induced-torque excitation of acoustic and optical modes in Ta/NiFe/Ru/NiFe/Ta synthetic antiferromagnet stacks grown on SiO2/Si substrates. The two Ta layers serve as spin torque sources with the opposite polarisations both in spin currents and Oersted fields acting on their adjacent NiFe layers. This can create the odd symmetry of spatial spin torque distribution across the growth direction, allowing us to observe different spin-wave excitation efficiency from synthetic antiferromagnets excited by homogeneous torques. We analyse the torque symmetry by in-plane angular dependence of symmetric and anti-symmetric lineshape amplitudes for their resonance and confirm that the parallel (perpendicular) pumping nature for the acoustic (optical) modes in our devices, which is in stark difference from the modes excited by spatially homogeneous torques. We also present our macrospin model for this particular spin-torque excitation geometry, which excellently supports our experimental observation. Our results offer capability of controlling spin-wave excitations by local spin-torque sources and we can explore further spin-wave control schemes based on this concept.Comment: 31 pages, 12 figure

    Tunable magnon-magnon coupling in synthetic antiferromagnets

    Get PDF
    In this work, we study magnon-magnon coupling in synthetic antiferromagnets (SyAFs) using microwave spectroscopy at room temperature. Two distinct spin-wave modes are clearly observed and are hybridised at degeneracy points. We provide a phenomenological model that captures the coupling phenomena and experimentally demonstrate that the coupling strength is controlled by the out-of-plane tilt angle as well as the interlayer exchange field. We numerically show that a spin-current mediated damping in SyAFs plays a role in influencing the coupling strength.Comment: 13 pages, 11 figures(including supplementary

    Beyond a phenomenological description of magnetostriction

    Full text link
    We use ultrafast x-ray and electron diffraction to disentangle spin-lattice coupling of granular FePt in the time domain. The reduced dimensionality of single-crystalline FePt nanoparticles leads to strong coupling of magnetic order and a highly anisotropic three-dimensional lattice motion characterized by a- and b-axis expansion and c-axis contraction. The resulting increase of the FePt lattice tetragonality, the key quantity determining the energy barrier between opposite FePt magnetization orientations, persists for tens of picoseconds. These results suggest a novel approach to laser-assisted magnetic switching in future data storage applications.Comment: 12 pages, 4 figure
    corecore