119 research outputs found

    Application of Level-Set Type Topology Optimization Analysis for Cavity Shape Estimation Problem in Structures Based On Non-Destructive Hammering Test

    Get PDF
    In this study, we present application of the level-set type topology optimization analysis for the cavity shape estimation problem in structures based on the non-destructive hammering test. The cavity shape is identified so as to minimize a performance function. The performance function is defined as the square sum of the residual between computed and the observed displacements on structure surface. In this study, accuracy of identified cavity shape is investigated by changing numerical parameters in the topology optimization

    Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes

    Get PDF
    Background: Senescence-accelerated mice (SAM) are a series of mouse strains originally derived from unexpected crosses between AKR/J and unknown mice, from which phenotypically distinct senescence-prone (SAMP) and -resistant (SAMR) inbred strains were subsequently established. Although SAMP strains have been widely used for aging research focusing on their short life spans and various age-related phenotypes, such as immune dysfunction, osteoporosis, and brain atrophy, the responsible gene mutations have not yet been fully elucidated. Results: To identify mutations specific to SAMP strains, we performed whole exome sequencing of 6 SAMP and 3 SAMR strains. This analysis revealed 32,019 to 38,925 single-nucleotide variants in the coding region of each SAM strain. We detected Ogg1 p.R304W and Mbd4 p.D129N deleterious mutations in all 6 of the SAMP strains but not in the SAMR or AKR/J strains. Moreover, we extracted 31 SAMP-specific novel deleterious mutations. In all SAMP strains except SAMP8, we detected a p.R473W missense mutation in the Ldb3 gene, which has been associated with myofibrillar myopathy. In 3 SAMP strains (SAMP3, SAMP10, and SAMP11), we identified a p.R167C missense mutation in the Prx gene, in which mutations causing hereditary motor and sensory neuropathy (Dejerine-Sottas syndrome) have been identified. In SAMP6 we detected a p.S540fs frame-shift mutation in the Il4ra gene, a mutation potentially causative of ulcerative colitis and osteoporosis. Conclusions: Our data indicate that different combinations of mutations in disease-causing genes may be responsible for the various phenotypes of SAMP strains.ArticleBMC GENOMICS. 14:248 (2013)journal articl

    Coronavirus Disease 19 (COVID-19) Vaccine Effectiveness Against Symptomatic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection During Delta-Dominant and Omicron-Dominant Periods in Japan: A Multicenter Prospective Case-control Study (Factors Associated with SARS-CoV-2 Infection and the Effectiveness of COVID-19 Vaccines Study)

    Get PDF
    Background. Although several coronavirus disease 2019 (COVID-19) vaccines initially showed high efficacy, there have been concerns because of waning immunity and the emergence of variants with immune escape capacity.Methods. A test-negative design case-control study was conducted in 16 healthcare facilities in Japan during the Deltadominant period (August-September 2021) and the Omicron-dominant period (January-March 2022). Vaccine effectiveness (VE) against symptomatic severe acute respiratory syndrome coronavirus 2 infection was calculated for 2 doses for the Deltadominant period and 2 or 3 doses for the Omicron-dominant period compared with unvaccinated individuals.Results. The analysis included 5795 individuals with 2595 (44.8%) cases. Among vaccinees, 2242 (55.8%) received BNT162b2 and 1624 (40.4%) received messenger RNA (mRNA)-1273 at manufacturer-recommended intervals. During the Delta-dominant period, VE was 88% (95% confidence interval [CI], 82–93) 14 days to 3 months after dose 2 and 87% (95% CI, 38–97) 3 to 6 months after dose 2. During the Omicron-dominant period, VE was 56% (95% CI, 37–70) 14 days to 3 months since dose 2, 52% (95% CI, 40–62) 3 to 6 months after dose 2, 49% (95% CI, 34–61) 6+ months after dose 2, and 74% (95% CI, 62–83) 14+ days after dose 3. Restricting to individuals at high risk of severe COVID-19 and additional adjustment for preventive measures (ie, mask wearing/high-risk behaviors) yielded similar estimates, respectively.Conclusions. In Japan, where most are infection-naïve, and strict prevention measures are maintained regardless of vaccination status, 2-dose mRNA vaccines provided high protection against symptomatic infection during the Delta-dominant period and moderate protection during the Omicron-dominant period. Among individuals who received an mRNA booster dose, VE recovered to a high level

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Mining Source Code Improvement Patterns from Similar Code Review Works

    Get PDF
    IWSC 2019 : 2019 IEEE 13th International Workshop on Software Clones, 24-24 Feb. 2019, Hangzhou, ChinaCode review is key to ensuring the absence of potential issues in source code. Code reviewers spend a large amount of time to manually check submitted patches based on their knowledge. Since a number of patches sometimes have similar potential issues, code reviewers need to suggest similar source code changes to patch authors. If patch authors notice similar code improvement patterns by themselves before submitting to code review, reviewers’ cost would be reduced. In order to detect similar code changes patterns, this study employs a sequential pattern mining to detect source code improvement patterns that frequently appear in code review history. In a case study using a code review dataset of the OpenStack project, we found that the detected patterns by our proposed approach included effective examples to improve patches without reviewers’ manual check. We also found that the patterns have been changed in time series; our pattern mining approach timely achieves to track the effective code improvement patterns

    Impact of Coding Style Checker on Code Review - A Case Study on the OpenStack Projects

    Get PDF
    IWESEP 2018 : 9th International Workshop on Empirical Software Engineering in Practice, 4-4 Dec. 2018, Nara, JapanCode review is key to ensuring the absence of potential issues in source code. Code review is changing from a costly manual check by reviewer to a cost-efficient automatic check by coding style checkers. So that patch authors can verify the changed code before submitting their patches. Although cost-efficiency, the checkers do not detect all potential issues, requiring reviewers to verify the submitted patches based on their knowledge. It would be most efficient if patch authors will learn potential issues and remove the same type of issues from patches prior to code review. This study investigates potential issues that patch authors have repeatedly introduced in their patch submissions despite receiving feedback. To understand the impact of adopting checkers to patch authors' coding style improvement, this study compares two types of potential issues: Automatically Detected Issues by checkers (ADIs) and Manually Detected Issues by reviewers (MDIs). In a case study using an OpenStack code review dataset, we found that the patch authors have repeatedly introduced the same type of MDIs, while they do not repeat ADIs. This result suggests that the introduction of code style checkers might promote the patch authors' effective potential issues learning
    corecore