
奈良先端科学技術⼤学院⼤学 学術リポジトリ
Nara Institute of Science and Technology Academic Repository: naistar

Title
Mining Source Code Improvement Patterns from Similar Code

Review Works

Author(s) Ueda, Yuki; Ishio, Takashi; Ihara, Akinori; Matsumoto, Kenichi

Citation
IWSC 2019 : 2019 IEEE 13th International Workshop on

Software Clones, 24-24 Feb. 2019, Hangzhou, China

Issue Date 2019

Resource Version author

Rights

© 2019 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

DOI 10.1109/IWSC.2019.8665852

URL http://hdl.handle.net/10061/13125

Mining Source Code Improvement Patterns
from Similar Code Review Works

Yuki Ueda∗, Takashi Ishio∗, Akinori Ihara†, and Kenichi Matsumoto∗
∗Nara Institute of Science and Technology, Japan

†Wakayama University, Japan
{ueda.yuki.un7, ishio}@is.naist.jp, ihara@sys.wakayama-u.ac.jp, matumoto@is.naist.jp

Abstract—Code review is key to ensuring the absence of poten-
tial issues in source code. Code reviewers spend a large amount
of time to manually check submitted patches based on their
knowledge. Since a number of patches sometimes have similar
potential issues, code reviewers need to suggest similar source
code changes to patch authors. If patch authors notice similar
code improvement patterns by themselves before submitting to
code review, reviewers’ cost would be reduced. In order to detect
similar code changes patterns, this study employs a sequential
pattern mining to detect source code improvement patterns that
frequently appear in code review history. In a case study using a
code review dataset of the OpenStack project, we found that the
detected patterns by our proposed approach included effective
examples to improve patches without reviewers’ manual check.
We also found that the patterns have been changed in time series;
our pattern mining approach timely achieves to track the effective
code improvement patterns.

Index Terms—code review, source code changes, sequential
pattern mining

I. INTRODUCTION

Code review requires highly collaborative works between
patch author and reviewers [1]. Its process involves source
code verification, feedback, and modification. The reviewers
provide technical oversight for patch authors, eradicating cod-
ing issues that the patch authors may not be able to self-detect.
This collaborative process is key to ensuring that potential
issues are fixed.

To help the developers use a common implementation style,
some software projects provide an own coding guideline.
The coding guideline usually includes general conventions
for programming languages such as PEP8 [2], CERT C, and
MISRA C. Also, current coding style checkers, such as like
Pylint [3] is used to detect common implementation style
issues. However, there are some undefined project-specific
implementation conventions in each project, it is difficult
for novice developers to use them. And, the conventions
would be changed in time series. Reviewers often spend
much time verifying the proposed code changes through code
review manually [4], [5]. This works help for achieve well
maintainable software for the future development.

In our previous study, we found that reviewers needed
to send the same feedback several times to solve the same
type of issues that are not defined in project/language coding
guideline [6]. The time that solving the similar type of issues
can be reduced if patch authors fix these issues by themselves
before patch submissions.

To reduce the code review cost, we propose an approach
to extract source code improvement patterns from existing
code review history. Since various code improvements have
been recorded in the code change history. We detect similar
improvements in submitted patches using a sequential pattern
mining algorithm that is a kind of Type-3 code clone detection
technique. Using this approach, patch authors can apply the
same improvement to their code in order to improve their code
quality.

The previous research proposed an approach to detect
famous refactoring pattern automatically [7]. In our research,
we timely detect code improvement patterns even that patterns
are only used in one target project. It can clear to the most
important pattern in the project.

As a case study, we analyze 228,099 submitted patches in
OpenStack. To evaluate source code improvement patterns that
are detected from the code change dataset, we define two
research questions.

RQ1: Which code improvement patterns are frequently
appear?

In our target dataset, our approach detects 1,476 improve-
ment patterns. Especially, we find 8 frequently appeared code
improvement patterns that have appeared more than 300 times
and more than 0.10 accuracy to remove redundant patterns
and choose threshold from similar pattern paper. Also, we
classify the 8 patterns into 3 categories (i.e. OpenStack-
specific problems, Python language-specific problem, and
Readability problem). Despite these 8 patterns are not included
in OpenStack and Python language coding guideline, we found
patterns’ related discussion on StackOverflow and OpenStack
document. Using our approach, novice patch author can un-
derstand implicit projects’ conventions.

RQ2: Which type of code improvement patterns that
increase/decrease over time?

Coding style checkers are working based on fixed sets
of rules, improvement pattern might be changing by project
policy or environment changes. For frequency of code im-
provement patterns that solving python update problems, that
are changing in time series. Using our approach, reviewers
can timely track code improvement patterns, and easily solve
similar potential issues.

The rest of the paper is organized as follows. Section II
introduces the code review process. Section III describes our
approach in answering the two research questions. Section IV

presents the evaluation results of research questions. Section V
establishes the validity of our empirical study. Section VI
introduces related works. Section VII summaries this paper
and describes our future work.

II. CODE REVIEW

There are various tools for managing peer code review
processes. For example, Gerrit 1 and ReviewBoard 2 are com-
monly used in many software projects to receive lightweight
reviews. Technically, these code review tools are used for patch
submission triggers, automatic tests, and manual reviewing. It
helps to decide whether or not the submitted patch should be
integrated into a version control system.

Gerrit is used by our target OpenStack projects as a code
review tool. Following the steps illustrated below is the code
review process in the Gerrit.

1. A patch author submits a patch to project. We define the
submitted patch as InitialPatch.

2. Reviewers verify InitialPatch. If the reviewers detect
any issues, they send feedback and ask for a revision of
the patch through Gerrit.

3. After the patch author revises InitialPatch and submits
the fixed patch as SecondPatch, the reviewer verifies
SecondPatch again. The patch authors need to repeat-
edly fix the patch until the reviewers make a decision to
accept or reject the patch. We define the last patch as
IntegratedPatch.

4. Once the patch author completely addresses the concerns
of the reviewers, IntegratedPatch will be integrated
into the version control system.

In previous research, most of the reviewers are consider-
ing that code improvement is the most important in code
review [8]. Code improvement is defined as terms of read-
ability, commenting, consistency, dead code removal and so
on. However, it does not involve correctness or defects. In
this study, we define code improvement patterns from code
change difference between Initial Patch and Integrated Patch.

III. PATTERN MINING APPROACH

This section describes the approach of sequential pattern
mining to detect code improvement patterns. We detect code
improvement patterns through code review using a sequential
pattern mining technique. Sequential pattern mining is a well-
known method for the finding of relevant patterns from two or
more item sequences [9]. Sequential pattern mining extracts
frequent subsequences from a sequence dataset. A sequence
in a sequence dataset is an ordered list of elements [10].

For example, if we has two sequence (abc) and ace
that have three elements, we can detect pattern (a c)
that appeared two times. We detect code improvement pattern
from source code tokens as the sequence. A previous mining
approach focused on partial order of API calling on source
code [11].

1Gerrit Code Review: https://code.google.com/p/gerrit/
2ReviewBoard: https://www.reviewboard.org/

This approach focuses on source code changes through
code review to detect source code improvement patterns that
independents from API. We extract code improvement from
code review systems, then extract frequent changes as patterns.
Also, we use Prefixspan algorithm [12] that is one of the most
efficiency sequential pattern mining algorithm. Even redundant
pattern can be found in the patterns, this approach ignores
them by appeared frequency and patterns’ confidence.

A. Pattern Minning Process
In this research, we collect code improvement patterns as the

changed token sequence. We target source code token differ-
ences sequence between initial and integrated patches. Figure 1
shows the overview of the detecting sequence approach in this
study.

1. We extract pairs of code chunks (consecutive lines of
code) from the initial patch and integrated patch pairs.
The pairs are simply recognized by applying diff
between the patches.

2. We divide the difference by token; at the same time,
normalize NUMBER literal and STRING literal tokens
to increase detectable pattern.

3. We convert line difference to token difference sequence
as the dataset of sequential pattern mining.

4. We extract token difference sequence pattern by sequen-
tial pattern mining.

5. We count how many times do patterns appeared from
other patch pairs.

We adopt improvement pattern to initial patches that have
Trigger sequence. Trigger sequence is tokens sequence to
adopt improvement pattern. If the initial patch has tokens
of trigger sequence, we can suggest code change based on
improvement pattern. We detect trigger sequences from pat-
terns’ deleted and unchanged tokens. In Listing 1, if we
detect (i=dic - [+ .get() improvement patterns,
and we extract trigger sequence (i=dic [) from deleted
and unchanged tokens.

B. Filtering and Detecting Confidence
When we suggest a code improvement pattern to initial

patch that has tokens of trigger sequence, some patterns will
suggest wrong change method. To remove redundant patterns,
we use four filtering approaches.

1) We ignore patterns that do not suggest changes. So only
added/deleted patterns are skipped. For example (i=dic
- [-]) pattern will be removed because this pattern

just removed two token.
2) We ignore duplicated meaning patterns. For example,

(- [+ .get() pattern are contained in (i=dic - [

+ .get() patterns. We then prioritize larger size pattern if
there are the changes in the same line.

3) We filter less than 10% confidence patterns. We calculate
patterns’ confidence by below:

Confidence =
|ActuallyChangedIntegratedPatches|

|TriggerableInitialPatches|
(1)

- i = key
+ i =dic.get(“key”)

- i = dic[“key”]
+ i = dic.get(“key”)

Initial Patch Integrated Patch

i=dic

1. Extract pairs of code chunks

2. Divide and normalize tokens

3. Convert line difference to

token difference sequence

- [-]+ .get(STRING +)

4. Extract token difference

sequence pattern

- i = key
+ i = dic[“key”]

- [-]STRING

i + get +)+ . + (dic=

i dic=

- [i=dic - [+ .get(i=dic

- [i=dic STRING

- [i=dic -]

+)- [i=dic

- [+ .get(i=dic STRING

…

i=dic + .get(- [+ .get(i=dic -]

…

5. Count each patterns’ appeared

time from other patches

Pattern Count

5

3

2

- [i=dic

- [+ .get(i=dic

- [i=dic STRING

Fig. 1. Approach Overview of the Detecting Token Difference Sequence

Listing 1
EXAMPLE OF THE TRIGGERABLE INITIAL PATCH AND INTEGRATED PATCH

PATTERN CASE OF PATTERN (I=DIC - [+ .GET()

T r i g g e r a b l e i n i t i a l p a t c h
1 i = d i c [’ key ’]
−−−
A c t u a l l y changed i n t e g r a t e d p a t c h
1 i = d i c . g e t (’ key ’)
−−−
NOT a c t u a l l y changed i n t e g r a t e d p a t c h
1 i = d i c [’ key2 ’]

Where Triggerable Initial Patches are initial patches that
have trigger sequence. Where Actually Changed Integrated
Patches are integrated patches that initial patch is triggerable
and that changed based on improvement pattern. In Listing 1,
we can detect triggerable initial patch that has trigger sequence
(i=dic [). If that patch is changed by integrated patch
based on a pattern (i=dic - [+ .get(), that patch is
actually changed integrated patch. If the pattern has a less than
0.10 confidence, we remove the pattern to reduce evaluation
time on research questions.

4) We count support value that means how many occurred
patterns in the dataset. And we filter patterns that only ap-
peared once.

IV. CASE STUDY

This section introduces the evaluation of the approach of
each detected pattern. To evaluate patterns, we measure the
accuracy of each pattern. In section III, we calculate pattern
and confidence from same dataset. In this section, we calculate
accuracy by the same approach. We detect patterns from

training dataset and calculate patterns’ accuracy from test
dataset.

A. Case Study Design

This study targets the OpenStack project that is a soft-
ware platform for cloud computing, respectively. We detect
1,476 patterns from OpenStack code review dataset. Particu-
larly, we focus on 8 most frequently appeared code improve-
ment patterns.

To evaluate detected code improvement patterns, we define
two research questions.
RQ1: Which code improvement patterns are frequently
appear?

The software project might have implicit coding conventions
that are not included in projects’ coding guideline. If patch
author can refer code improvement patterns that frequently ap-
pears and high accuracy, patch author could fix source code be-
fore submitting to code review. In RQ1, we evaluate frequently
appeared code improvement patterns. As the dataset, we divide
diff dataset by two to 555,050 (Training diff datasets) and
61,673 changes (Test diff datasets). First, we detect 1,476 code
improvement patterns that appeared more than one of 300
times from training diff dataset. Second, we calculate patterns’
accuracy by using Section III-B’s confidence approach from
test diff datasets.
RQ2: Which type of code improvement patterns that
increase/decrease over time?

Some patch author needs to change old convention code to
the latest convention code. If the frequently appeared pattern
can be changing by times, a project needs to include the
latest pattern. In RQ2, to detect which patterns’ frequencies
transition, we divide dataset. We defined the period of the
divided dataset to period 1 to period 5. Each period has
121,652 change difference from 616,723 changes. We detect
patterns from period n as the training dataset and calculate
patterns’ accuracies by diff set on the period (n+1) as the test
dataset.

B. RQ1 Result: Which code improvement patterns are fre-
quently appear?

Table I shows most frequently appeared code improvement
patterns and accuracy. We found 8 frequently appeared code
improvement patterns that have appeared more than 300 times
and more than 0.10 accuracy. We filtered out the other fre-
quently patterns that are subsets of other patterns.

By our manual study, we name each pattern to discuss
in this paper, and survey related document from OpenStack
documents, StackOverflow and Python documents.

Almost these patterns are described on OpenStack docu-
ments or discussed on StackOverflow, and each description has
a footnote of the related document. These documents are not
only from OpenStack project. Even OpenStack has a coding
guideline that shows general coding conventions, detected
code improvement patterns are not included in OpenStack
coding convention pages 10. This result shows this approach

10OpenStack coding convention https://docs.openstack.org/hacking/latest/

TABLE I
THE MOST FREQUENTLY APPEARED CODE IMPROVEMENT PATTERNS FROM 555,050 CHANGES IN OPENSTACK

Description in StackOverflow
Pattern category Pattern name or OpenStack document Detected Pattern Support Accuracy
Project-specific disk2disk api Changing dependency of refactoring return fs_type in (5,754 1.00

on OpenStack 3 - disk
+ disk_api
...same type of fix after 7 lines

stubs.Set2stub out Use stub_out function instead of self . 5,696 0.32
self.stubs.Set depended mox + stub_out
which is not maintained package 4 - stubs . Set

)
Language-specific assert-equals2equal assertEquals is defined as - assertEquals 4,015 0.99

dupurecated alias in Python3 5 + assertEqual
xrange2range Both works are similar in Python2, and - xrange 1,159 0.86

xrange is removed from Python3 6 + range
iteritems2items iteritems method is removed from - iteritems 818 0.12

Python3 8 + items
Readability- reverse-assert-arguments Left argument shows expected result, self.assertEqual(1,149 0.53
improvement right shows actual in test case output 7 + NUMBER ,

- , NUMBER
remove-redundant-in Remove redundant “in” for readability self . 930 0.55

e.g. self.assertTrue(x in list) - assertTrue
to self.assertIn(x, list) + assertIn

- in
Other directly-dictionary-access Avoiding to get None value if directory + (419 0.11

key is missing 9 - . get (
STRING can be changed other STRING
parameter such as NUMBER -)

+]

3 disk2disk api: https://wiki.openstack.org/wiki/VirtDiskApiRefactor
4 stubs.Set2stub out: https://docs.openstack.org/nova/13.1.2/api/nova.test.html#nova.test.TestCase.stub out
5 assert-equals2equal: https://stackoverflow.com/questions/930995/assertequals-vs-assertequal-in-python
6 xrange2range: https://stackoverflow.com/questions/15014310/why-is-there-no-xrange-function-in-python3
7 reverse-assert-arguments: https://stackoverflow.com/questions/2404978/why-are-assertequals-parameters-in-the-order-expected-actual
8 iteritems2items: https://stackoverflow.com/questions/10458437/what-is-the-difference-between-dict-items-and-dict-iteritems
9 directly-dictionary-access: https://stackoverflow.com/questions/11041405/why-dict-getkey-instead-of-dictkey

can detect patterns that are implicit and useful on the real
development process.

One complicated pattern “directly-dictionary-access” has
low accuracy since it has a small impact on code behav-
ior. Listings 2 is example of adopting “directly-dictionary-
access” pattern in OpenStack 11. On other hands, despite
“dict[STRING]” to “dict.get("STRING")” pattern
has appeared only 139 times, it avoid KeyError when if
directory key is missing. One of the causes, some OpenStack
code are already written to avoid KeyError likely Listings 3.

Second, “reverse-assert-arguments” pattern has no impact
to source code behavior and code readability. This pattern
improves output readability such as Listings 4. And this
ordering is assumed for creating the failure message to the
patch author.

Although, We define 3 types of patterns for improvement
purposes.

1) Project-specific Pattern: The patterns that solve a
OpenStack-specific problem; they are occurred by
OpenStack dependency update (e.g. disk2disk_api,
stubs.Set2stub_out)

11Example of directly-dictionary-access: https://review.openstack.org/#/c/
174036/8..9/jenkins jobs/modules/publishers.py

Listing 2
EXAMPLE OF THE “DIRECTLY-DICTIONARY-ACCESS” PATTERN FOR

AVOIDING “KEYERROR”

I n i t i a l p a t c h
1 XML. SubElement (h i p c h a t , ’ comple teJobMessage ’) . t e x t = s t r (
2 d a t a . g e t (’ comple te−message ’ , ’ ’))
−−−
I n t e g r a t e d p a t c h
1 i f ’ comple te−message ’ in d a t a :
2 XML. SubElement (h i p c h a t , ’ comple teJobMessage ’) . t e x t =

s t r (
3 d a t a [’ comple te−message ’])

Listing 3
EXAMPLE OF THE UNNECESSARY REVERSE

“DIRECTLY-DICTIONARY-ACCESS” PATTERN FOR AVOIDING KEYERROR IF
DIRECTORY KEY IS MISSING

I n i t i a l p a t c h
1 i f ’ key ’ in d a t a :
2 x = d a t a [’ key ’]
−−−
I n t e g r a t e d p a t c h
1 x = d a t a . g e t (’ key ’)

2) Language-specific Pattern: The patterns that solve
difference between python2 and python3; they are oc-
curred by Python language update (xrange2range,
assert-equals2equal, iteritems2items)

TABLE II
CHANGING FREQUENCY AND ACCURACY OF EACH PERIOD CHANGES (EACH N = 121,652)

Support / Accuracy
Pattern name period 2 (2015-6-23 ˜ 2015-7-23) period 3 (˜ 2015-12-3) period 4 (˜ 2016-5-25) period 5 (˜ 2016-11-10)
disk2disk api 0 / —– 0 / —– 2850 / 1.00 2625 / 1.00
stubs.Set2stub out 0 / —– 0 / —– 0 / —– 3133 / 0.99
assert-equals2equal 1140 / 0.98 0 / —– 0 / —– 0 / —–
xrange2range 984 / 0.99 78 / 0.60 52 / 0.65 0 / —–
iteritems2items 3222 / 0.27 229 / 0.58 163 / 0.26 225 / 0.32
reverse-assert-arguments 764 / 0.47 0 / —– 730 / 0.46 0 / —–
remove-redundant-in 807 / 0.02 0 / —– 693 / 0.20 1351 / 0.27
directly-dictionary-access 0 / —– 1631 / 0.17 0 / —– 0 / —–

Listing 4
EXAMPLE OF THE “REVERSE-ASSERT-ARGUMENTS” PATTERN FOR MOVE

EXPECTED VALUE TO LEFT

I n i t i a l p a t c h
1 x = 2
2 s e l f . a s s e r t E q u a l (x , 1)
or
1 y = ’ h e l l 0 ’
2 s e l f . a s s e r t E q u a l (y , ’ H e l l o ’)

Outpu t :
A s s e r t i o n E r r o r : 2 != 1 or
A s s e r t i o n E r r o r : ’ h e l l 0 ’ != ’ H e l l o ’
− h e l l 0
+ H e l l o
−−−
I n t e g r a t e d p a t c h
1 x = 2
2 s e l f . a s s e r t E q u a l (1 , x)
or
1 y = ’ h e l l 0 ’
2 s e l f . a s s e r t E q u a l (’ H e l l o ’ , y)

Outpu t :
A s s e r t i o n E r r o r : 1 != 2 or
A s s e r t i o n E r r o r : ’ H e l l o ’ != ’ h e l l 0 ’
− H e l l o
+ h e l l 0

3) Readability-improvement Pattern: The patterns that
improve code readability (remove-redundant-in,
although reverse-assert-arguments improve
output readability,)

4) Other Pattern (directly-dictionary-access is
reversed when developer would not avoid None value)

Python language has an already strict coding convention
such as PEP8. For example, these conventions defined whites-
pace position and number of character on each line. To detect
these issues, OpenStack and some python projects are using
coding style checker. Detected Language-specific patterns are
not supported current coding style checker, and it can improve
current coding style checker. This result helps other python
projects’ coding convention not only OpenStack projects.

On the other hands, Project-specific pattern depends on
project dependency. Our approach can detect these patterns
before new patch author submits code to the project. Open-
Stack has an own coding style guideline that defined based on
python language. Detected patterns are not included in their
guideline, it can be added as a new coding convention on
OpenStack guideline. As the future work, we might detect
other code improvement pattern instead of the OpenStack-

specific patterns if we would adapt to the other projects.
We could not find out remove-redundant-in docu-

ments and that improvement pattern does not have an impact
on execution. However, that change might improve code
readability, and this approach helps to detect these implicit
patterns.� �

Our approach can detect frequently appeared code im-
provement patterns to solve similar problems easily.
These patterns are not written on a project of language
coding guideline. Detected patterns can be classified
into 3 categories by purpose (Project-specific, Language-
specific, and Readability-improvement pattern).� �

C. RQ2 Result: Which type of code improvement patterns that
increase/decrease over time?

Figure 2 shows transition of code improvement patterns
frequencies in OpenStack, and Table II shows transition of
code improvement patterns accuracy. All count is different
from Table I since this result does not contain in period
1 (2011-2-23 ˜ 2015-6-15) that are only used for detecting
pattern. Although, period 5 is only used to evaluate patterns
that from period 4.

Project-specific Pattern Category: This pattern category
(disk2disk_api and stubs.Set2stub_out) appeared
only in period 4 and period 5, and had 1.00 accuracy. Because
these patterns are caused by OpenStack dependency changes
and reviewers might be well-known changes.

Language-specific Pattern Category: Some language-
specific pattern category (xrange2range and
assert-equals) appeared period 2 and they has a
more than 0.98 accuracy. However, in period 5, these
patterns have not appeared than period 2. One of the reasons,
all detectable these patterns might be fixed automatically
such as by six library 12. From this result, this approach
can be used to survey language version popularity. Even
iteritems2items depends on language function, it
only has less than 0.58 accuracy. Because iteritems
and items functions’ return different value types between
Python2 and Python3.

Readability-improvement and Other Pat-
tern Category: Readability-improvement

12six library: https://pythonhosted.org/six/

0

1000

2000

3000

2 3 4 5

period

co
un

t

pattern

disk2disk_api

stubs.Set2stub_out

assert−equals2equal

xrange2range

iteritems2items

reverse−assert−arguments

remove−redundant−in

directly−dictionary−access

Fig. 2. Transition of Code Improvement Patterns Frequencies

pattern (remove-redundant-in and
reverse-assert-arguments) and Other pattern
(directly-dictionary-access) appear depends on
periods, and the accuracies are less than 0.50. Since these
improvement patterns do not have an impact on behavior,
reviewers could ignore them. However, these improvement
patterns frequently appear, the patterns would be useful to
increase Readability-improvement patterns’ accuracy.

In this RQ2, we confirmed that our proposed approach
is likely to detect code improvement patterns. Using this
approach, patch authors fix a source code based on the latest
trend of project or language policy before submitting to
code review. In our future study, we will survey how many
code changes we need to analyze to detect efficient code
improvement patterns.� �

Detected pattern categories’ frequencies and accuracies
are changing over time. Our approach can track trends of
projects to solve the latest problems.� �

V. THREATS TO VALIDITY

External validity: We target source code that is only
Python files from the OpenStack project. Also, we target
only Python source code files. Surely, when we target other
projects which use other programming languages, we may
find different improvement patterns. Then, we can adapt our
approach to analyze other software with other programming
languages.

Internal validity: Our analysis compares only Initial patch
and Integrated patch; it may misrecognize potential issues
fixed through multiple revisions as another type of change.
However, each revision also may include redundant changes
that are not reflected in the Integrated patch. Our analysis
conducts to investigate the effect of code review ignoring such
changes.

To detect many improvement pattern, we normalized
STRING and NUMBER literals. If we adopt another normal-
ization way, such as coiling loop [13] that detects identifiable

semantic idiom pattern, we may find more pattern that nor-
malized identifier or concreted STRING or NUMBER literals.

To evaluate patterns, we divide dataset to 1:9 and 5 di-
visions. That did not clear which data combination is the
best. However, at least 5 divisions can detect enough pattern
frequencies changing by time series. We will conduct an
empirical study to decide the best division in the future work.

Construct validity: We detect patterns from diffs of patches
that changed through code review. Patterns depend on review-
ers’ policy even reviewer missed problems on the source code.
To check patterns’ usability, we will check patterns behavior
in the future work.

Reliability: We classify patterns into three categories
manually based on OpenStack document and StackOverflow
information. To generalize our approach, we will classify
patterns automatically by comparing with other project and
platform in the future work.

VI. RELATED WORKS

A. Code Review

Many researchers have conducted empirical studies to un-
derstand code review [14]–[16]. Unlike our focus, most pub-
lished code review studies focus on the review process or
the reviewers’ communication. While code review is effective
in improving the quality of software artifacts, it requires a
large amount of time and many human resources [17]. Various
methods are proposed to select appropriate reviewers based on
the reviewer’s experience [18]–[21] and complexity of code
changes [4]. In our work here, we focus on code changes
based on feedback from the reviewers.

Code reviews are refactoring based on coding conven-
tions [22]. Also, patch authors and reviewers often discuss
and propose solutions with each other to revise patches [23].
75% of discussions for revising a patch are about software
maintenance and 15% are about functional issues [16], [24].
These studies help us understand which issues should be
solved in the code review process. In particular, our approach
detects some patterns (e.g. remove-redundant-in) that
do not have an impact on code behavior. This result fol-
lows previous research results. However some patterns (e.g.

directoly-dictionary-access) have a small impact
of source code behavior, even code review does not change
other parts of source code. Our approach detects not only
refactoring pattern, but this approach also detects patterns that
have a small impact on the project.

B. Coding Conventions

Code convention issues also relate to our study because
some code reviews are improving code based on coding con-
vention [22], [25], [26]. Smit et al. [26] found that CheckStyle
is useful for detecting whether or not source codes follow
its coding conventions. Also, some convention tools such
as Pylint released by Thenault check the format of coding
conventions. In addition, Allamanis et al. [27] have developed
a tool to fix code conventions. Also, Negara et al. [28]
developed atool to detect code change pattern. However, to
the best of our knowledge, little is known about how a patch
author fixes to source code based on reviewers feedback.

VII. SUMMARY

This study introduced a mining approach for code im-
provement patterns that are code changes based on reviewers
feedback.

Using sequential pattern mining, we detect 3 categories of
code improvement pattern. The results of our case study on
the OpenStack project showed our approach can detect code
improvement patterns that are not defined on OpenStack and
Python coding guideline. They can help to project manager and
language developer to improve current coding guideline. Al-
though, each code improvement patterns’ appeared frequencies
are changing by time series. Our approach can track pattern
transition timely, and it can help patch author to understand
project policy.

The contribution of this study is the discovery of frequent
patterns through code review. This proposed approach may
help to design an issue detection. Also, we created a coding
convention checker that detects project-specific patterns. If a
patch author detects the possibility of changing these patterns
before the code review request, the reviewers might be able
to spend more time on other additional review requests.

ACKNOWLEDGMENT

We would like to thank the Support Center for Ad-
vanced Telecommunications (SCAT) Technology Research,
Foundation. This work was supported by JSPS KAKENHI
Grant Numbers JP18H03222, JP17H00731, JP15H02683, and
JP18KT0013.

REFERENCES

[1] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,” in
Proc. ICSE, 2015, pp. 403–414.

[2] G. van Rossum, B. Warsaw, and N. Coghlan, “Pep 8: style guide for
python code,” Python. org, 2001.

[3] S. Thenault et al., “Pylint. code analysis for python.”
[4] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer

review on open source software projects,” in Proc. ICSE, 2011, pp.
541–550.

[5] A. Bosu and J. C. Carver, “Impact of developer reputation on code
review outcomes in oss projects: an empirical investigation,” in Proc.
ESEM, 2014, pp. 33–42.

[6] Y. Ueda, A. Ihara, T. Ishio, and K. Matsumoto, “Impact of coding style
checker on code review -a case study on the openstack projects-,” in
Proc. IWESEP, 2018, pp. 355–359.

[7] D. Silva and M. T. Valente, “Refdiff: Detecting refactorings in version
histories,” in Proc. MSR, 2017, pp. 269–279.

[8] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proc. ICSE, 2013, pp. 712–721.

[9] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu,
“Freespan: frequent pattern-projected sequential pattern mining,” in
Proc. KDD, 2000, pp. 355–359.

[10] T. Ishio, H. Date, T. Miyake, and K. Inoue, “Mining coding patterns to
detect crosscutting concerns in java programs,” in Proc. WCRE, 2008,
pp. 123–132.

[11] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining api patterns as partial
orders from source code: from usage scenarios to specifications,” in
Proc. ESEC/FSE, 2007, pp. 25–34.

[12] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-
C. Hsu, “Prefixspan: Mining sequential patterns efficiently by prefix-
projected pattern growth,” in Proc. ICDE, 2001, pp. 215–224.

[13] M. Allamanis, E. T. Barr, C. Bird, P. Devanbu, M. Marron, and C. Sut-
ton, “Mining semantic loop idioms,” IEEE Transactions on Software
Engineering, vol. 44, pp. 651–668, 2018.

[14] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Investigating
code review practices in defective files: An empirical study of the qt
system,” in Proc. MSR, 2015, pp. 168–179.

[15] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,” in
Proc. SANER, 2015, pp. 171–180.

[16] J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find
bugs: How the current code review best practice slows us down,” in
Proc. ICSE, 2015, pp. 27–28.

[17] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proc. MSR, 2014, pp.
192–201.

[18] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K. Matsumoto, “Who should review my code? a file location-based
code-reviewer recommendation approach for modern code review,” in
Proc. SANER, 2015, pp. 141–150.

[19] M. Zanjani, H. Kagdi, and C. Bird, “Automatically recommending peer
reviewers in modern code review.” Transactions on Software Engineer-
ing, vol. 42, no. 6, pp. 530–543, 2015.

[20] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: Code reviewer
recommendation in github based on cross-project and technology expe-
rience,” in Proc. ICSE, 2016, pp. 222–231.

[21] X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review this
change? putting text and file location analyses together for more accurate
recommendations.” in Proc. ICSME, 2015, pp. 261–270.

[22] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An empirical
study of open source project patches,” in Proc. ICSME, 2014, pp. 271–
280.

[23] J. Tsay, L. Dabbish, and J. Herbsleb, “Let ’s talk about it: Evaluating
contributions through discussion in github.” in Proc. FSE, 2014, pp.
144–154.

[24] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?” in Proc.
MSR, 2014, pp. 202–211.

[25] C. Boogerd and L. Moonen, “Assessing the value of coding standards:
An empirical study,” in Proc. ICSM, 2008, pp. 277–286.

[26] M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia, “Code convention
adherence in evolving software,” in Proc. ICSM, 2011, pp. 504–507.

[27] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proc. FSE, 2014, pp. 281–293.

[28] S. Negara, M. Codoban, D. Dig, and R. E. Johnson, “Mining fine-grained
code changes to detect unknown change patterns,” Proc. ICSE, pp. 803–
813, 2014.

	01表紙
	01_UedaIWSC2019-preprint

