& SC\SnCQ

\nst,
”"(‘s

; R

yoor®

2 QO
% NAIST® &

¥ REFIRRIZRMAE AT Fif IR K~

Nara Institute of Science and Technology Academic Repository: naistar

Impact of Coding Style Checker on Code Review - A Case Study on

Title .

the OpenStack Projects
Author(s) Ueda, Yuki; Thara, Akinori; Ishio, Takashi; Matsumoto, Kenichi
Citat; IWESEP 2018 : 9th International Workshop on Empirical

itation

Software Engineering in Practice, 4-4 Dec. 2018, Nara, Japan
Issue Date 2018
Resource Version author

© 2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

Rights) _ _
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

DOI 10.1109/IWESEP.2018.00014

URL http://hdl.handle.net/10061/13127

Impact of Coding Style Checker on Code Review
-A case study on the OpenStack projects-

Yuki Ueda*, Akinori Tharaf, Takashi Ishio* and Kenichi Matsumoto*
*Nara Institute of Science and Technology, Japan
fWakayama University, Japan
Email: ueda.yuki.un7@is.naist.jp, ihara@sys.wakayama-u.ac.jp, {ishio, matumoto} @is.naist.jp

Abstract—Code review is key to ensuring the absence of
potential issues in source code. Code review is changing from
a costly manual check by reviewer to a cost-efficient automatic
check by coding style checkers. So that patch authors can verify
the changed code before submitting their patches. Although
cost-efficiency, the checkers do not detect all potential issues,
requiring reviewers to verify the submitted patches based on
their knowledge. It would be most efficient if patch authors will
learn potential issues and remove the same type of issues from
patches prior to code review. This study investigates potential
issues that patch authors have repeatedly introduced in their
patch submissions despite receiving feedback. To understand
the impact of adopting checkers to patch authors’ coding style
improvement, this study compares two types of potential issues:
Automatically Detected Issues by checkers (ADIs) and Manually
Detected Issues by reviewers (MDIs). In a case study using an
OpenStack code review dataset, we found that the patch authors
have repeatedly introduced the same type of MDIs, while they
do not repeat ADIs. This result suggests that the introduction of
code style checkers might promote the patch authors’ effective
potential issues learning.

I. INTRODUCTION

Code review requires highly collaborative works between
patch author and reviewers [1]. Its process involves source
code verification, feedback, and modification. Reviewers pro-
vide a technical oversight for patch authors, eradicating coding
issues that patch authors may not be able to self-detect. This
collaborative process is key to ensuring that potential issues,
i.e., potential issues are fixed.

Code review is changing from a costly manual check by
reviewer to a cost-efficient automatic check by coding style
checkers like Pylint!, so that patch authors can verify the
changed code before submitting their patches. The problem
is that coding style checkers cannot detect all potential issues.
Potential issues are almost always detected through manual
code review.

We conduct an empirical study to explore if patch authors
repeatedly introduce the same type of potential issues despite
receiving reviewers’ feedback. To this end, this study focuses
on two types of potential issues: Automatically Detected Issues
by coding style checkers (ADIs) and Manually Detected Issues
by reviewers (MDIs).

As a case study, we analyze 228,099 submitted patches in
OpenStack. In the dataset, some patch authors introduced the
same type of issues more than twice. We, therefore, study how

IPylint: https://www.pylint.org/

coding style checker and reviewers’ feedback improve patch
authors coding style or not:

RQ1: How often do the patch authors repeatedly introduce
ADIs in future patch submissions? We found that the patch
authors that have introduced the ADIs rarely introduce the
same type of ADIs in their future patch submissions.

RQ2: How often do the patch authors repeatedly introduce
MDIs in future patch submissions? We found that the patch
authors repeatedly introduce the same type of MDIs more
frequently than ADIs in their subsequent patch submissions.
We also found that the patch authors find it difficult to detect
MDIs in the submitted patches that are executable without
runtime error before submitting the changed code. Hence,
manual code review by the reviewers is necessary.

Our main contributions are two-fold. The first contribution
is an investigation on the impact of coding style checker,
which improves patch authors’ coding style to avoid the same
type of issues in subsequent patch submissions. The second
contribution is evidence that shows difficulty patch authors
face MDI with avoiding before submitting the changed code.
Our study concludes that manual code review by reviewers is
necessary to avoid MDIs.

The rest of the paper is organized as follows. Section II
introduces the code review process and related works. Sec-
tion III describes our approach in answering the two research
questions. Section IV presents the results of research ques-
tions. Section V establishes the validity of our empirical study.
Section VI concludes this paper and describes our future work.

II. BACKGROUND AND RELATED WORK
A. Code Review Process

There are various tools for managing peer code review
processes. For example, Gerrit> and ReviewBoard® are com-
monly used in many software projects to receive lightweight
reviews. Technically, these code review tools are used for patch
submission triggers, automatic tests and manual reviewing to
decide whether or not the submitted patch should be integrated
into a version control system.

Following the steps illustrated below is the code review
process in the Gerrit Code Review. Gerrit is used by our target
OpenStack projects as a code review management tool.

2Gerrit Code Review: https://code.google.com/p/gerrit/
3ReviewBoard: https://www.reviewboard.org/

1. A patch author submits a patch to Gerrit Code Review.
We define the submitted patch as Patch;.

2. Reviewers verify Patch,. If the reviewers detect any
issues, they send feedback and ask for a revision of the
patch through Gerrit Code Review.

3. After the patch author revises Patch; and submits the
fixed patch as Patchy, the reviewer verifies Patcho
again. The patch authors need to repeatedly fix the patch
until the reviewers make a decision to accept or reject
the patch. We define the last patch as Patch,,.

4. Once the patch author completely addresses the concerns
of the reviewers, Patch,, will be integrated into the
version control system.

Code review process requires a shared coding style among
its participants. When many patch authors with different
technical skills contribute to software development, the project
manager needs to keep a consistent coding style to keep
higher maintainability. To achieve a consistent coding style,
software projects often have their own coding rules. Coding
rules represent a guideline for patch authors to implement
software in compliance with a common coding style among
patch authors.

To support implementation with common coding styles,
some coding style checkers for automatically detecting poten-
tial issues are needed. Using such tools, the patch authors can
automatically check whether or not the changed source code
is based on the coding rule before submitting their patches.
In addition, the output of the automatic coding style checkers
is helpful for reviewers to study potential issues to develop
coding skill [2].

B. Related Works

Code Review Many researchers have conducted empirical
studies to understand code review [3], [4]. Unlike our focus,
most published code review studies focus on the review
process or the reviewers’ communication. While code review
is effective in improving the quality of software artifacts, it
requires a large amount of time and many human resources [5].
Various methods are proposed to select appropriate reviewers
based on the reviewer’s experience [6]—[8] and complexity of
code changes [9]. In our work here, we focus on code changes
based on feedback from the reviewers.

Code Quality coding style checkers verify the source code
automatically. In addition to Pylint, python has the tools that
detect potential issues, such as pep8* and flake8’. Using these
tools makes detecting python’s potential issues easier. Our
study aims to understand the impact of code fixing for issues
detected by these coding style checkers.

Code reviews are refactoring based on coding rules [10].
Also, patch authors and reviewers often discuss and propose
solutions with each other to revise patches [11]. In particular,
75% of discussions for revising a patch are about software
maintenance and 15% are about functional issues [4]. These

4pep8: https://pypi.python.org/pypi/pep8
Sflake8: https:/pypi.python.org/pypi/flake8

studies help us understand which issues should be solved in the
code review process. We focus on the impact of code fixing
suggestions from reviewers. In particular, we study whether
patch authors that have introduced and fixed potential issues
repeatedly introduce the same type of issues in future patch
submissions.

III. STUDY DESIGN
A. Overview

This study investigates whether patch authors who have
introduced the potential issues repeatedly introduce the same
type of issues in future patch submissions. Specifically, we
analyze the relationship between the experience of patch
authors and the potential issues included in patches.

Figure 1 describes an overview of the procedure to measure
two metrics for each research question. The two metrics are:

1) Patch Submission Experience, which represents past sub-
mitted patches that patch authors changed and submitted
to the code review tool. This study analyzes each patch
p include the author’s name, the time of submission, and
the source file changes.

2) potential issues are issues which are detected by coding
style checkers or by reviewers. This study identifies
potential issues in the submitted version (Patch;) and
fixed version (Patch,,) and summarizes the occurrences
as a metric.

We measure those metrics from a set of the submitted patches
(Ps) to a code review tool.

B. Extraction of potential issues
This study identifies potential issues from a patch p if:

« Patch p is integrated into the project repository, and
o the submitted version (Patchq) of p is different from the
integrated version (Patchy,).

If a patch p is directly integrated into the project repository
without any changes, the patch has no potential issue. We
ignore rejected patches from our analysis because reviewers
may reject those patches without fixing them completely.

We investigate two groups of potential issues:

ADI: Automatically Detected Issue by a current tool

MDI: Manually Detected Issue by a reviewer

We distinguish these two groups because patch authors can
identify ADIs by themselves using coding style checkers. In
other words, while ADIs are directly visible to patch authors,
MDIs are not detected before reviewers verify them.

1) ADI: We identified ADIs by executing coding style
checker to source code files. The coding style checker outputs
in which lines the target source code files include ADIs.
We define the submitted patch that includes ADIs if there
are ADIs in any lines of any files. Our target OpenStack
project using Python employs Pylint to detect ADIs as listed
in Table I. The Pylint can detect 105 ADIs. This table shows
the most frequent 7 ADIs that patch authors introduced. We
specifically regard three category issues with the detection
messages “Convention”, “Refactor”, and “Warning” outputted

Patch,
Source Code

Gerrit Extract ADIs

by code

Count ADIs

RQ1

Distribution of patch

checking tool Result from code
— -
checking tool

Coding
issues (ADIs)

Count ADIs each
submission experience
and number of the

/B

Patch,

Count each author’s patch
submission experience

Patches

iy Number of the ADI each
author
ADls
4

Filter out by author’s patch
submission experience

Patch submission

experience

Filter out by author’s patch
submi_ssion experience

Distribution of patch

Source Code
Source Code
Changed code
—— | ChUNK pairs

Coding Number of the MDI each
issues (MDls) author

submission experience
and number of the

|_>

Compare Patch, and Extract and Count MDIs

Count MDls MDls

Patch, source code

each author

Fig. 1. Overview of our approach to answer the research questions.

TABLE I

OUR TARGET POTENTIAL ISSUES AND THE EXAMPLES.

Group | Category Issue Type Issue description Submitted example Fixed example
ADI Convention | invalid-name Any name not matching the PEP8 | lowerCase = 0 lower_case = 0
names
bad-continuation Wrongly continued indentation if (foo > 0 and if (foo > 0 and
foo < 1): foo < 1):
wrong-import-order Imported modules are not sorted import my_package import sys
import sys import my_package
Refactor no-self-use A method is not preceded by a def func(foo, bar): @staticmethod
decorator and does not contain return foo * bar def func(foo, bar):
any references return foo * bar
too-few-public-method | A Class just stores data without Omitted due to the limited Omitted due to the limited
methods space* space
too-many-arguments A method or function takes too Omitted due to the limited Omitted due to the limited
many arguments space** space
Warning unused-argument An argument is not used def func(foo, bar): def func (foo):
return foo return foo
MDI (None) new_line Line separators are deficient or foo = [0, 1] foo = [0,
excessive (including indent) 1]
alphabet Any name could be correct foo = 0 bar = 0
space Space or tab could be format foo = 0 foo=0
number Number literal could be correct foo = 0 foo = 1
strings String literal could be correct print ("Hello") print ("HelloWorld")
comment Comment line need to be change # TODO # DONE

* An example of too-few-public-method is available at: https://github.com/c-w/gutenberg/commit/2b1{f63falf17554bec6c9225872406d63300b72
** An example of too-many-arguments is available at: https://github.com/Bitmessage/PyBitmessage/commit/95¢300d7cae5036d188ce9accSbad6c91287dcal

from Pylint as the potential issue because they represent
potential issues and potential bugs. We excluded “Error” and
“Fatal” categories because they indicate functional problems.

2) MDI: We identified MDIs by comparing the submitted
and fixed versions of a patch. However, it should be noted
that we found it difficult to detect semantic differences and
potential issues fixed between the versions because the patch
authors or reviewers do not always explain why code fixing
is needed. Hence, this study assumes that a potential issue is
fixed by only one chunk change. As the future work, we will
focus on changes that have multiple types of changes such as
“number” and “strings”. We approximate potential issues by
syntactic differences using a heuristic approach. We regard 6
types of syntactic elements as MDIs listed in Table I. Some
MDIs are not independent of ADIs (e.g. “bad-continuation”
and “space”). These MDIs were found frequently through our
previous study [12] by manual surveys in the code changes
between Patchy and Patch,,. The process of MDI detection
comprises four steps as follows. Figure 2 illustrates the process

for an example patch.

1. We extract pairs of code chunks (consecutive lines of
code) from the submitted version and fixed version of
a patch. The pairs are simply recognized by applying
diff utility to the two versions.

2. For each chunk pair, we extract the differences between
characters. If the chunk pair is exactly the same, the
chunk has no potential issues.

3. We classify the differences of a chunk pair into six
types of syntactic elements. We employed the lexical
analyzer of ANTLR with a Python grammar file in
implementation.

4. If the differences between a chunk pair include only
one syntactic element type, we consider the chunk as
an instance of a potential issue related to the type. If
the differences include two or more types, we regard
the differences as a problem other than potential issues.
Finally, we extract all MDIs included in the submitted
version of the patch.

1. Extract change
chunks pairs

2. Extract character
J level differences

-0
1

3. Classify the differences
v into syntax element types

number
4. Extract the MDI types from
the syntax element types

number
alphabet

MDI type Count
space 0
number 1
alphabet 0

Fig. 2. Overview of our approach to count MDIs.

The detection accuracy of the above steps has been validated
by the manual surveys using samples of code changes based
on confidence level (95%). The individual detection accuracy
for each MDI is: 100.0% for “comment”, 97.5% for “strings”,
96.8% for “new_line” and “space”, 86.4% for “alphabet”, and
57.1% for “number”. The detection of five MDIs except for
“number” is sufficiently accurate for statistical analysis. We
also analyze “number” because it appears frequently.

C. Potential Issue Count

This study measures the occurrence of an individual issue
type in patches. For an issue ¢, we represent its occurrence
in a patch as a Boolean value I;(p) € {0,1}. We define the
number A;(a,n) for author a’s n-th patch as follows.

> Lp))

peP(a;n)

Ai(a,n) =

If an author a repeatedly introduces an issue type i, 4;(a,n)
increases with the number of patch submissions n. Using
this approach, we analyze whether patch authors that have
introduced the potential issues repeatedly introduce the same
type of issues in future patch submissions.

IV. CASE STUDY
A. Dataset

This study targets a large and successful OSS project: the
OpenStack systems, which have recorded a large amount of
reviewing activity using the code review tool. OpenStack is
a collection of open source components that make up the
enterprise-scale cloud computing platform®. The OpenStack
project has the coding rules based on PEP8 and employs a
Pylint to automatically detect violations of coding rules.

6OpenStack: http://www.openstack.org/

TABLE 11
NUMBER OF THE INTRODUCED ADIS FROM 228,099 PATCHES (SORT BY
ADISs AND MDIs IN Patchy)

ADI in ADIs in
Group Issue Type Patchy | Patchy | Authors
ADI invalid-name 2,517 1,406 1,116
bad-continuation 1,544 797 809
unused-argument 1,472 779 784
no-self-use 1,432 745 779
too-few-public-methods 1,372 701 736
wrong-import-order 1,330 652 715
too-many-arguments 1,209 613 662
MDIs in Patchy
MDI alphabet 22,950 3,130
strings 21,094 3,066
space 19,565 3,008
number 16,512 2,760
new_line 8,328 2,163
comment 5,381 1,679

We target patches which the OpenStack project received
from 2011 to 2015. During this period, 6,575 patch authors
submitted 228,099 patches to the project. We obtain Patch,
and Patch,, using Gerrit REST API’.

We obtained the patch submission experience, ADIs, and
MDIs from the patch set. Table II shows the number of patches
including each of the ADIs and MDIs, and the number of
patch authors who submitted the patches. Top 7 potential
issues frequently reported by the Pylint from the paper due to
the space limitations. From Table II, we can recognize many
ADIs in Patch; and the MDIs in Patch; which are fixed
before Patch,, for each patch author. For example, 1,116 patch
authors have introduced 2,517 “invalid-name” issues as ADIs
in total. It appears that each patch author has introduced the
same “invalid-name” issue type 2.26 times on average. Also,
44.1% “invalid-name” issues are removed between Patchq
which are fixed before Patch,,.

B. Analysis

This study investigates how often patch authors repeatedly
introduce two groups of potential issues: ADIs (RQ1) and
MDIs (RQ2). For each group of potential issues, we perform
two analyses. First, this study analyzes how often patch authors
have introduced each type of potential issue in our target
dataset. We study whether ADIs or MDIs are more likely to
be repeatedly introduced. Second, this study analyzes whether
patch authors that have introduced the potential issues are
likely to introduce the same type of issues repeatedly in future
patch submissions. Since some patch authors have not submit-
ted a sufficient number of patches to analyze their experience,
we select patch authors who have submitted patches greater
than or equal to 20 times. This threshold includes the most
active 1,599 patch authors who have created 80% of patches
in total according to the Pareto principle [13].

RQ1: How often do the patch authors repeatedly introduce
ADIs in future patch submissions? Table III shows the
distributions of 3 ADI issue counts for each author and

7https://gerrit-review.googlesource.com/Documentation/rest- api.html

TABLE III
THE RATIO (%) OF PATCH AUTHORS WHO INTRODUCED EACH OF ADIS
AND MDIS n TIMES

TABLE V
DISTRIBUTION OF EACH MDI INTRODUCED WHEN THE SUBMISSION
EXPERIENCE IS 20

invalid- | bad-cont- unused-
n name inuation | argument | alphabet | strings | space
1 36.6 449 45.6 8.7 9.5 10.3
2 21.0 222 21.7 9.3 10.1 10.4
3 11.9 114 10.7 7.3 7.7 8.1
4 7.2 5.7 5.6 5.9 6.3 6.5
5 5.0 4.4 42 5.1 5.4 5.5
6 3.6 32 29 45 4.7 4.8
7 2.7 22 2.4 3.9 4.1 4.1
8 22 1.6 1.7 3.6 3.7 3.6
9 1.6 1.1 1.2 32 33 33
>10 8.1 3.3 4.0 48.5 453 434

TABLE IV

DISTRIBUTION OF EACH ADI INTRODUCED WHEN THE SUBMISSION
EXPERIENCE IS 20

ADI Type
invalid-name 1
bad-continuation 1
unused-argument 1
no-self-use 1
1
1
1

1st Qu. | Median | 3rd Qu.

too-few-public-methods
wrong-import-order
too-many-arguments

N e e
(NS 2N NS RN SN (TN (S I NS N \S

issue type. The plots include 1,117 patch authors who have
introduced any ADIs at least once. Only 36%—45% of patch
authors do not have introduced the same type of issue multiple
times, even though the project has coding rules. However,
69%—78% of patch authors only introduced the same type of
issues up to 3 times.

Also, Table IV shows the number of ADIs introduced by the
most active patch authors. The table shows the median, the first
quartile, and the third quartile of the ADIs in the first 20 patch
submissions. The numbers are rounded to the nearest decimals
to indicate the number of introductions. While some patch
authors have more experience than 20 patches, we omitted the
distributions of the later patches because they are very similar
to the first 20 patches.

While the table includes the most frequent 7 types of
ADIs, the median numbers of each issue are only introduced
once except for “bad-continuation” and “wrong-import-order”
issues. The result indicates that most patch authors only
introduced the same type of issues twice. If the code review
tools show experience of patch authors who introduced ADIs
more than 3 times or not, this information can help to consider
the reviewers should check the issues for experienced patch
authors. Those issues are easy to understand, and the coding
style checker is available for both patch authors and reviewers.
When patch authors have received feedback once, they will
understand how to check and avoid those potential issues in
future patch submissions.

Answer of RQ1: While new patch authors may introduce
ADIs, they will not repeatedly introduce the same type of
ADIs more than three times.

RQ2: How often do the patch authors repeatedly introduce

MDI Type Ist Qu. | Median | 3rd Qu.
alphabet 4 6 8
strings 4 5 8
space 4 5 8
number 4 5 7
new_line 2 3 5
comment 2 3 4

MDIs in future patch submissions? Table III shows the
distributions of 3 MDI issue counts of patch authors. 3,488
patch authors who have introduced any MDI at least once.
Only 8%-10% of patch authors do not have introduced the
same type of issues multiple times. The numbers are greater
than ADIs. We analyze the distributions of the numbers of
MDIs introduced by the most active patch authors. Table V
shows the median, the first quartile, and the third quartile of
MDI issue counts in the first 20 patch submissions. While
some patch authors have more experience than 20 patches,
we omitted the distributions of the later patches because they
are very similar to the first 20 patches. The median numbers
of each issue for the patch authors are 3—-6 times. The result
means that reviewers have to verify those issues in patches
irrespective of the experience of patch authors.

Listings 1 and Listings 2 shows example patche whose
“alphabet” issues are fixed through code review. The patches
are written by the same author; Listings 1 shows the first
instance of the “alphabet” issue introduced by the author.
The submitted version imports “_” function to handle a log
message, while he OpenStack project has a rule to use _LW
(“Log warning”) to record a message®. Since this rule is a
project-specific rule, the correct implementation is difficult
for a novice patch author. In Listing 2, the patch author uses
the wrong object as a method receiver; so that the submitted
patch read data from an object and write it to the same object
stored in common_policy variable. That source code is also
executable without a runtime error.

Answer of RQ2: Patch authors repeatedly introduce the
same type of MDIs. Reviewers have to review patches care-
fully to identify MDIs.

V. THREATS TO VALIDITY

External validity: We analyzed 611 subprojects in the Open-
Stack project but only Python source code files. Surely,
when we target other projects which use other programming
languages, we may find differences. The OpenStack project
mainly uses common coding rules that use the coding style
checker (Pylint). We can then adapt our approach to analyze
other software with other programming languages. We catego-
rized MDIs by their change contents rather than their purposes
in order to automate our analysis. Hence, a single category
of MDI may include modifications for different purposes like
Listings 1 and Listings 2. It has a risk to overestimate the

8https://docs.openstack.org/oslo.il8n/latest/user/usage.html

Listing 1
EXAMPLE OF THE FIXED “ALPHABET” ISSUE FOR AN IMPORT CORRECT
MODULE: THE FIRST TIME FOR AN AUTHOR

Patch 1
1 from nova.il8n import _

Patch n
1 from nova.il8n import _LW

Listing 2
EXAMPLE OF THE FIXED “ALPHABET” ISSUE FOR THE CORRECT VALUE:
THE 17 TH TIME FOR THE AUTHOR OF LISTING 1

Patch 1

1 common_policy.set_rules (dict ((k,
(v))

2 for k,

common_policy . parse_rule

v in rules.items()))

Patch n

1 ironic_policy.set_rules (dict ((k,
(v))

2 for k,

common_policy . parse_rule

v in rules.items()))

number of repeatedly introduced MDIs. In this research, we
compared developers’ experiences across multiple sub-projects
with the number of potential issues, to measure the coding
style improvement of the entire developer. Because MDIs are
general category than ADIs. It can be future work to verify the
improvement of coding styles of each developer. The number
of patch submissions represents the experience of discussions
with reviewers. In other words, patch authors had opportunities
to learn potential issues in source code. In our future work, we
plan to develop a method to detect MDIs automatically based
on past code review feedback and patch’s size/complexity.
Internal validity: First, we target potential issues when the
patch authors change a couple of lines. Hence, we do not
collect “God Class” or “Spaghetti Code” in the potential issues
because large-scale changes will not become potential issues.
Secondly, our analysis of ADIs may be dependent on pylint.
Python has other coding style checkers like pep8. We choose
pylint because it can detect more issues such as “unused-
argument” that are not detected by pepS8. Finally, our analysis
compares only Patchy and Patch,_1; it may misrecognize

VI. CONCLUSION

This paper conducted an empirical study to understand
whether or not patch authors repeatedly introduce potential
issues during code review process. As a case study using an
OpenStack code review dataset, we specifically focused on
two types of potential issues: automatically detected issues by
coding (ADI) and manually detected issues by coding rules
(MDI). We found those patch authors introduce the same type
of ADIs less than three times. However, patch authors are
likely to re-introduce the same type of MDIs. These results
suggest that coding style checker are effective for improving
patch authors’ coding style. However, code reviewers should

potential issues fixed through multiple revisions as another
type of change. However, each revision also may include
redundant changes that are not reflected in the final patch. Our
analysis tries to investigate the effect of code review ignoring
such changes.

carefully verify issues that can not be detected automatically,
no matter how many reviews they undergo. To save the cost
associated with manual reviews, software projects need coding
style checkers, and the scope of coding style checkers needs
to be enhanced so that MDIs could also be automatically
detected.

ACKNOWLEDGMENT

We would like to thank the Support Center for Advanced
Telecommunications (SCAT) Technology Research, Founda-
tion. This work was supported by JSPS KAKENHI Grant
Numbers 18H03222, 17H00731, 15H02683 and 18KTO0013.

REFERENCES

[1] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,” in
Proc. ICSE, 2015, pp. 403-414.

[2] R. Lobb and J. Harlow, “Coderunner: A tool for assessing computer
programming skills,” ACM Inroads, vol. 7, no. 1, pp. 47-51, 2016.

[3] R. Morales, S. MclIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,” in
Proc. SANER, 2015, pp. 171-180.

[4] J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find
bugs: How the current code review best practice slows us down,” in
Proc. ICSE, 2015, pp. 27-28.

[51 S. MclIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proc. MSR, 2014, pp.
192-201.

[6] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K. Matsumoto, “Who should review my code? a file location-based
code-reviewer recommendation approach for modern code review,” in
Proc. SANER, 2015, pp. 141-150.

[71 M. Zanjani, H. Kagdi, and C. Bird, “Automatically recommending peer
reviewers in modern code review.” Transactions on Software Engineer-
ing, vol. 42, no. 6, pp. 530-543, 2015.

[8] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: Code reviewer
recommendation in github based on cross-project and technology expe-
rience,” in Proc. ICSE, 2016, pp. 222-231.

[9] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer

review on open source software projects,” in Proc. ICSE, 2011, pp.

541-550.

Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An empirical

study of open source project patches,” in Proc. ICSME, 2014, pp. 271-

280.

[11] J. Tsay, L. Dabbish, and J. Herbsleb, “Let " s talk about it: Evaluating

contributions through discussion in github.” in Proc. FSE, 2014, pp.

144-154.

Y. Ueda, A. Thara, T. Hirao, T. Ishio, and K. Matsumoto, “How is IF

statement fixed through code review? - a case study of gt project -,” in

Proc. IWPD, 2017, pp. 207-213.

R. S. Pressman, Software engineering: a practitioner’s approach. Pal-

grave Macmillan, 2005.

[10]

[12]

[13]

	03表紙
	03_UedaIWESEP2018-preprint

