76 research outputs found

    Соціально-комунікативний аспект змішування мовних кодів (на матеріалі поетичних творів)

    Get PDF
    (UA) Стаття присвячена актуальним питанням білінгвізму. Здійснене вивчення особливостей використання іншомовних елементів в українських поетичних творах.(EN) The article is devoted to the questions of bilingualism. The analysis of the bilingual units usage in the Ukrainian poetry is done in the paper

    Morphology and ion diffusion in PEDOT:Tos. A coarse grained molecular dynamics simulation

    Full text link
    A Martini coarse-grained Molecular Dynamics (MD) model for the doped conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is developed. The morphology of PEDOT:Tos (i.e. PEDOT doped with molecular tosylate) and its crystallization in aqueous solution for different oxidation levels were calculated using the developed method and compared with corresponding all atomistic MD simulations. The diffusion coefficients of Na+ and Cl- ions in PEDOT:Tos are studied using the developed coarse-grained MD approach. It is shown that the diffusion coefficients decrease exponentially as the hydration level is reduced. It is also predicted that the diffusion coefficients decrease when the doping level of PEDOT is increased. The observed behavior is related to the evolution of water clusters and trapping of ions around the polymer matrix as the hydration level changes. The predicted behavior of the ionic diffusion coefficients can be tested experimentally, and we believe that molecular picture of ionic diffusion in PEDOT unraveled in the present study is instrumental for the design of polymeric materials and devices for better and enhanced performance.This work was supported by the Troëdssons foundation (896/16), Knut and Alice Wallenberg Foundation through the project The Tail of the Sun, and the Swedish Research Council via ‘‘Research Environment grant’’ on ‘‘Disposable paper fuel cells’’ (201605990). IZ thanks the Advanced Functional Material center at Linköping University for financial support

    Заснування системи військових поселень на півдні України

    Get PDF
    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poissons and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters

    Charge transport and structure in semimetallic polymers

    Get PDF
    Owing to changes in their chemistry and structure, polymers can be fabricated to demonstrate vastly different electrical conductivities over many orders of magnitude. At the high end of conductivity is the class of conducting polymers, which are ideal candidates for many applications in low-cost electronics. Here, we report the influence of the nature of the doping anion at high doping levels within the semi-metallic conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) on its electronic transport properties. Hall effect measurements on a variety of PEDOT samples show that the choice of doping anion can lead to an order of magnitude enhancement in the charge carrier mobility > 3 cm2/Vs at conductivities approaching 3000 S/cm under ambient conditions. Grazing Incidence Wide Angle X-ray Scattering, Density Functional Theory calculations, and Molecular Dynamics simulations indicate that the chosen doping anion modifies the way PEDOT chains stack together. This link between structure and specific anion doping at high doping levels has ramifications for the fabrication of conducting polymer-based devices. © 2017 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 97–104.The authors acknowledge the European Research Council (ERC-starting-grant 307596), the Swedish foundation for strategic research (project: “Nano-material and Scalable TE materials”), the Knut and Alice Wallenberg foundation (project “Power Paper” and “Tail of the Sun”), The Swedish Energy Agency (3833221), the Swedish Research Council via “Research Environment grant” on “Disposable paper fuel cells” (2016205990), and the Advanced Functional Materials Center at Link€oping University. The authors thank Masatsugu Yamashita from the THz Sensing & Imaging Lab at RIKEN in Japan for conducting the THz reflectance spectroscopy experiments. D.R. Evans acknowledges the support of the Australian Research Council through the Future Fellowship scheme (FT160100300). J.W. Andreasen acknowledges the support of the European Research Council (ERC-consolidator-grant 681881)

    Impact of oxidation-induced ordering on the electrical and mechanical properties of a polythiophene co-processed with bistriflimidic acid

    Get PDF
    The interplay between the nanostructure of a doped polythiophene with oligoether side chains and its electrical as well as mechanical properties is investigated. The degree of order of the polymer is found to strongly vary when co-processed with bistriflimidic acid (H-TFSI). The neat polythiophene as well as strongly oxidized material are largely disordered while intermediate concentrations of H-TFSI give rise to a high degree of π-stacking. The structural disorder of strongly oxidized material correlates with a decrease in the kinetic fragility with H-TFSI concentration, suggesting that positive interactions between TFSI anions and the polymer reduce the ability to crystallize. The electrical conductivity as well as the Young\u27s modulus first increase upon the addition of 4-10 mol% of H-TFSI, while the loss of π-stacking observed for strongly oxidized material more significantly affects the latter. As a result, material comprising 25 mol% H-TFSI displays an electrical conductivity of 58 S cm−1 but features a relatively low Young\u27s modulus of only 80 MPa. Decoupling of the electrical and mechanical properties of doped conjugated polymers may allow the design of soft conductors that are in high demand for wearable electronics and bioelectronics

    Tuning of the elastic modulus of a soft polythiophene through molecular doping

    Get PDF
    Molecular doping of a polythiophene with oligoethylene glycol side chains is found to strongly modulate not only the electrical but also the mechanical properties of the polymer. An oxidation level of up to 18% results in an electrical conductivity of more than 52 S cm(-1) and at the same time significantly enhances the elastic modulus from 8 to more than 200 MPa and toughness from 0.5 to 5.1 MJ m(-3). These changes arise because molecular doping strongly influences the glass transition temperature T-g and the degree of pi-stacking of the polymer, as indicated by both X-ray diffraction and molecular dynamics simulations. Surprisingly, a comparison of doped materials containing mono- or dianions reveals that - for a comparable oxidation level - the presence of multivalent counterions has little effect on the stiffness. Evidently, molecular doping is a powerful tool that can be used for the design of mechanically robust conducting materials, which may find use within the field of flexible and stretchable electronics

    Effect of Substrate on Structural Phase Transition in a Conducting Polymer during Ion Injection and Water Intake: A View from a Computational Microscope

    No full text
    Conducting polymers operating in aqueous electrolyte represent mixed electron-ion conductors, where the ion injection and water intake can lead to structural and morphological changes that can strongly affect the material morphology and device performance. In the present paper, using molecular dynamics simulations, we provide an atomistic understanding of the structural phase transitions during electrochemical oxidation and ion injection in a conjugated polymer with glycolated side chains recently reported by Bischak et al. [J. Am. Chem. Soc., 2020, 142, 7434], where the polymer switched between two structurally distinct phases corresponding to different oxidation levels. To outline the structural changes, we calculated the polymer film morphology and X-ray diffraction patterns at different oxidation levels. We demonstrated that the observed phase transition arises due to interplay between several factors, including the effect of the substrate leading to the preferential edge-on arrangement of the chains and formation of lamellas; unzipping of the interdigitated polymer chains during oxidation and ion intake; and changes in the morphology when pi-pi stacking is absent at low oxidation level and forms at the high oxidation level facilitating the electron mobility and enabling the oxidation of the polymer film. Our calculations quantitatively reproduce the experimental data, which outlines the predictive power of the molecular modeling of the polymer systems that can be utilized for the design of materials and devices with improved performance.Funding Agencies|Knut and Alice Wallenberg FoundationKnut &amp; Alice Wallenberg Foundation; Swedish Research CouncilSwedish Research Council [2017-04474]; Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University [2009-00971]</p

    Electron interaction, charging, and screening at grain boundaries in graphene

    No full text
    Electronic, transport, and spin properties of grain boundaries (GBs) are investigated in electrostatically doped graphene at finite electron densities within the Hartree and Hubbard approximations. We demonstrate that depending on the character of the GBs, the states residing on them can have a metallic character with a zero group velocity or can be fully populated losing the ability to carry a current. These states show qualitatively different features in charge accumulation and spin polarization. We also demonstrate that the semiclassical Thomas-Fermi approach provides a satisfactory approximation to the calculated self-consistent potential. The conductance of GBs is reduced due to enhanced backscattering from this potential.Funding Agencies|Swedish Institute||</p

    Why does solvent treatment increase the conductivity of PEDOT : PSS? Insight from molecular dynamics simulations

    No full text
    Poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate (PEDOT : PSS) is one of the most important conducting polymers. In its pristine form its electrical conductivity is low, but it can be enhanced by several orders of magnitude by solvent treatment, e.g. dimethyl sulfoxide (DMSO). There are various (and often conflicting) explanations of this effect suggested in the experimental literature, but its theoretical understanding based on simulation and modelling accounting for the complex realistic morphology of PEDOT : PSS is missing. Here, we report Martini coarse-grained molecular dynamics simulation for the DMSO solvent treatment of the PEDOT : PSS film. We show that during solvent treatment a part of the deprotonated PSS chains are dissolved in the electrolyte. After the solvent treatment and subsequent drying, the PEDOT-rich regions become closer to each other, with a part of the PEDOT chains penetrating into the PSS-rich regions. This leads to an efficient coupling between PEDOT-rich regions, leading to the enhancement of the conductivity. Another factor leading to the conductivity improvement is the pi-pi stacking enhancement resulting in more pi-pi stacks in the film and in the increased average size of PEDOT crystallites. Our results demonstrate that course-grained molecular dynamics simulations of a realistic system represent a powerful tool enabling theoretical understanding of important morphological features of conducting polymers, which, in turn, represents a prerequisite for materials design and improvement.Funding Agencies|Swedish Research Council [2016-05990, 2017-04474]; Aforsk</p
    corecore