1,584 research outputs found

    Testing the Higgs Sector of the Minimal Supersymmetric Standard Model at Large Hadron Colliders

    Full text link
    We study the Higgs sector of the Minimal Supersymmetric Standard Model, in the context of proton-proton collisions at LHC and SSC energies. We assume a relatively heavy supersymmetric particle spectrum, and include recent results on one-loop radiative corrections to Higgs-boson masses and couplings. We begin by discussing present and future constraints from the LEP experiments. We then compute branching ratios and total widths for the neutral (h,H,Ah,H,A) and charged (H±H^\pm) Higgs particles. We present total cross-sections and event rates for the important discovery channels at the LHC and SSC. Promising physics signatures are given by h→γγh \to \gamma \gamma, H→γγH \to \gamma \gamma or Z∗Z∗Z^* Z^* or τ+τ−\tau^+ \tau^-, A→τ+τ−A \to \tau^+ \tau^-, and t→bH+t \to b H^+ followed by H+→τ+ντH^+ \to \tau^+ \nu_{\tau}, which should allow for an almost complete coverage of the parameter space of the model.Comment: 51 pages, 30 figures (not enclosed and not available via e-mail

    Study of Two-Step Mechanisms in Pion Absorption on 6Li, 12C via Deuteron Emission

    Full text link
    The (pi+,pd), and (pi+,dd) reactions were investigated with pions of 100 and 165 MeV kinetic energy on 6Li and 12C targets. In comparison with previously published (pi+,pp) data on the same targets and at the same beam energies, kinematic regions were identified in which the neutron pickup process n+p->d dominated the observed deuteron yield. The importance of this mechanism increases with energy, contributing half of the observed cross section at 165 MeV. The contribution of direct quasi-triton absorption is significant only at 100 MeV.Comment: 23 pages, 12 figure

    Sneutrino Mass Measurements at e+e- Linear Colliders

    Get PDF
    It is generally accepted that experiments at an e+e- linear colliders will be able to extract the masses of the selectron as well as the associated sneutrinos with a precision of ~ 1% by determining the kinematic end points of the energy spectrum of daughter electrons produced in their two body decays to a lighter neutralino or chargino. Recently, it has been suggested that by studying the energy dependence of the cross section near the production threshold, this precision can be improved by an order of magnitude, assuming an integrated luminosity of 100 fb^-1. It is further suggested that these threshold scans also allow the masses of even the heavier second and third generation sleptons and sneutrinos to be determined to better than 0.5%. We re-examine the prospects for determining sneutrino masses. We find that the cross sections for the second and third generation sneutrinos are too small for a threshold scan to be useful. An additional complication arises because the cross section for sneutrino pair to decay into any visible final state(s) necessarily depends on an unknown branching fraction, so that the overall normalization in unknown. This reduces the precision with which the sneutrino mass can be extracted. We propose a different strategy to optimize the extraction of m(\tilde{\nu}_\mu) and m(\tilde{\nu}_\tau) via the energy dependence of the cross section. We find that even with an integrated luminosity of 500 fb^-1, these can be determined with a precision no better than several percent at the 90% CL. We also examine the measurement of m(\tilde{\nu}_e) and show that it can be extracted with a precision of about 0.5% (0.2%) with an integrated luminosity of 120 fb^-1 (500 fb^-1).Comment: RevTex, 46 pages, 15 eps figure

    Direct Higgs production and jet veto at the Tevatron and the LHC in NNLO QCD

    Get PDF
    We consider Higgs boson production through gluon--gluon fusion in hadron collisions, when a veto is applied on the transverse momenta of the accompanying hard jets. We compute the QCD radiative corrections to this process at NLO and NNLO. The NLO calculation is complete. The NNLO calculation uses the recently evaluated NNLO soft and virtual QCD contributions to the inclusive cross section. We find that the jet veto reduces the impact of the NLO and NNLO contributions, the reduction being more sizeable at the LHC than at the Tevatron.Comment: 22 pages, 12 postscript figure

    Dielectron Cross Section Measurements in Nucleus-Nucleus Reactions at 1.0 A GeV

    Full text link
    We present measured dielectron production cross sections for Ca+Ca, C+C, He+Ca, and d+Ca reactions at 1.0 A GeV. Statistical uncertainties and systematic effects are smaller than in previous DLS nucleus-nucleus data. For pair mass < 0.35 GeV/c2 : 1) the Ca+Ca cross section is larger than the previous DLS measurement and current model results, 2) the mass spectra suggest large contributions from pi0 and eta Dalitz decays, and 3) dsigma/dM is proportional to ApAt. For M > 0.5 GeV/c2 the Ca+Ca to C+C cross section ratio is significantly larger than the ratio of ApAt values.Comment: Submitted to Physical Review Letters. Further analysis information will be posted on our web pages -- http://macdls.lbl.gov Figure 1 has been redrawn to make more legible. Text modified to support redrawn figur

    The X-ray invisible Universe. A look into the halos undetected by eROSITA

    Full text link
    The paper presents the analysis of GAMA spectroscopic groups and clusters detected and undetected in the SRG/eROSITA X-ray map of the eFEDS (eROSITA Final Equatorial Depth Survey) area, in the halo mass range 1013−5x101410^{13}-5x10^{14} M⊙M_{\odot} and at z<0.2z < 0.2. We compare the X-ray surface brightness profiles of the eROSITA detected groups with the mean stacked profile of the undetected low-mass halos. Overall, we find that the undetected groups exhibit less concentrated X-ray surface brightness, dark matter, and galaxy distributions with respect to the X-ray detected halos. Consistently with the low mass concentration, the magnitude gap indicates that these are younger systems. The later assembly time is confirmed by the bluer average color of the BCG and of the galaxy population with respect to the detected systems. They reside with a higher probability in filaments while X-ray detected low-mass halos favor the nodes of the Cosmic Web. Because of the suppressed X-ray central emission, the undetected systems tend to be X-ray under-luminous at fixed halo mass, and to lie below the LX−MhaloL_X-M_{halo} relation. Interestingly, the X-ray detected systems inhabiting the nodes scatter the less around the relation, while those in filaments tend to lie below it. We do not observe any strong relation between the properties of detected and undetected systems with the AGN activity. The fraction of optically selected AGN in the galaxy population is consistent in the two samples. More interestingly, the probability that the BCG hosts a radio AGN is lower in the undetected groups. We, thus, argue that the observed differences between X-ray detected and undetected groups are ascribable to the Cosmic Web, and its role in the halo assembly bias. Our results suggest that the X-ray selection is biased to favor the most concentrated and old systems located in the nodes of the Cosmic Web.Comment: 15 pages, 13 figures, Submitted to MNRA

    An Alternative Method to Obtain the Quark Polarization of the Nucleon

    Get PDF
    An alternate method is described to extract the quark contribution to the spin of the nucleon directly from the first moment of the deuteron structure function, g1dg^d_1. It is obtained without recourse to the use of input on the nucleon wave function from hyperon decays involving the flavor symmetry parameters, F and D. The result for the quark polarization of the nucleon, ΔΣN,\Delta\Sigma_ N, is in good agreement with the values of the singlet axial current matrix element, a0a_0, obtained from recent next-to-leading order analyses of current proton, neutron and deuteron data.Comment: 7 pages, 1 figur

    O Corona, where art thou? eROSITA's view of UV-optical-IR variability-selected massive black holes in low-mass galaxies

    Full text link
    Finding massive black holes (MBHs, MBH≈104−107M⊙M_{BH}\approx10^4-10^7 M_{\odot}) in the nuclei of low-mass galaxies (M∗⪅1010M⊙M_{*}\lessapprox10^{10} M_{\odot}) is crucial to constrain seeding and growth of black holes over cosmic time, but it is particularly challenging due to their low accretion luminosities. Variability selection via long-term photometric ultraviolet, optical, or infrared (UVOIR) light curves has proved effective and identifies lower-Eddington ratios compared to broad and narrow optical spectral lines searches. In the inefficient accretion regime, X-ray and radio searches are effective, but they have been limited to small samples. Therefore, differences between selection techniques have remained uncertain. Here, we present the first large systematic investigation of the X-ray properties of a sample of known MBH candidates in dwarf galaxies. We extracted X-ray photometry and spectra of a sample of ∼200\sim200 UVOIR variability-selected MBHs and significantly detected 17 of them in the deepest available \emph{SRG}/eROSITA image, of which four are newly discovered X-ray sources and two are new secure MBHs. This implies that tens to hundreds of LSST MBHs will have SRG/eROSITA counterparts, depending on the seeding model adopted. Surprisingly, the stacked X-ray images of the many non-detected MBHs are incompatible with standard disk-corona relations, typical of active galactic nuclei, inferred from both the optical and radio fluxes. They are instead compatible with the X-ray emission predicted for normal galaxies. After careful consideration of potential biases, we identified that this X-ray weakness needs a physical origin. A possibility is that a canonical X-ray corona might be lacking in the majority of this population of UVOIR-variability selected low-mass galaxies or that unusual accretion modes and spectral energy distributions are in place for MBHs in dwarf galaxies.Comment: Accepted for publication in A&
    • …
    corecore