15 research outputs found

    K2 Observations of SN 2018oh Reveal a Two-Component Rising Light Curve for a Type Ia Supernova

    Get PDF
    We present an exquisite, 30-min cadence Kepler (K2) light curve of the Type Ia supernova (SN Ia) 2018oh (ASASSN-18bt), starting weeks before explosion, covering the moment of explosion and the subsequent rise, and continuing past peak brightness. These data are supplemented by multi-color Pan-STARRS1 and CTIO 4-m DECam observations obtained within hours of explosion. The K2 light curve has an unusual two-component shape, where the flux rises with a steep linear gradient for the first few days, followed by a quadratic rise as seen for typical SNe Ia. This "flux excess" relative to canonical SN Ia behavior is confirmed in our ii-band light curve, and furthermore, SN 2018oh is especially blue during the early epochs. The flux excess peaks 2.14±0.04\pm0.04 days after explosion, has a FWHM of 3.12±0.04\pm0.04 days, a blackbody temperature of T=17,5009,000+11,500T=17,500^{+11,500}_{-9,000} K, a peak luminosity of 4.3±0.2×1037ergs14.3\pm0.2\times10^{37}\,{\rm erg\,s^{-1}}, and a total integrated energy of 1.27±0.01×1043erg1.27\pm0.01\times10^{43}\,{\rm erg}. We compare SN 2018oh to several models that may provide additional heating at early times, including collision with a companion and a shallow concentration of radioactive nickel. While all of these models generally reproduce the early K2 light curve shape, we slightly favor a companion interaction, at a distance of \sim2×1012cm2\times10^{12}\,{\rm cm} based on our early color measurements, although the exact distance depends on the uncertain viewing angle. Additional confirmation of a companion interaction in future modeling and observations of SN 2018oh would provide strong support for a single-degenerate progenitor system

    The First Post-Kepler Brightness Dips of KIC 8462852

    Full text link

    The weakening outburst of the young eruptive star V582 Aur

    No full text
    V582 Aur is a pre-main-sequence FU Orionis type eruptive star, which entered a brightness minimum in 2016 March due to changes in the line-of-sight extinction. Here, we present and analyze new optical B, V, R C , and I C band multiepoch observations and new near-infrared J, H, and K S band photometric measurements from 2018 January–2019 February, as well as publicly available midinfrared Wide-field Infrared Survey Explorer (WISE) data. We found that the source shows a significant optical–near-infrared variability, and the current brightness minimum has not completely finished yet. If the present dimming originates from the same orbiting dust clump that caused a similar brightness variation in 2012, then our results suggest a viscous spreading of the dust particles along the orbit. Another scenario is that the current minimum is caused by a dust structure, that is entering and leaving the inner part of the system. The WISE measurements could be consistent with this scenario. Our long-term data, as well as an accretion disk modeling hint at a general fading of V582 Aur, suggesting that the source will reach the quiescent level in ~80 yr

    Observation of Continuous Divertor Detachment in H-mode Discharges in ASDEX Upgrade

    Get PDF
    Feedback-controlled puffing of neon and deuterium has been applied to control the edge-localized-mode behavior and the target plate power deposition during high-power H -mode discharges in ASDEX Upgrade. A regime has been found in which more than 90% of the heating power is lost through radiation and divertor detachment occurs, without deterioration of the energy confinement. The plasma remains in the H mode, exhibiting small-amplitude, high-frequency ELM's, which do not penetrate to the target plates in the strike zone region
    corecore