4 research outputs found

    SARS-CoV-2 mutant spectra at different depth levels reveal an overwhelming abundance of low frequency mutations

    Full text link
    Populations of RNA viruses are composed of complex and dynamic mixtures of variant genomes that are termed mutant spectra or mutant clouds. This applies also to SARS-CoV-2, and mutations that are detected at low frequency in an infected individual can be dominant (represented in the consensus sequence) in subsequent variants of interest or variants of concern. Here we briefly review the main conclusions of our work on mutant spectrum characterization of hepatitis C virus (HCV) and SARS-CoV-2 at the nucleotide and amino acid levels and address the following two new questions derived from previous results: (i) how is the SARS-CoV-2 mutant and deletion spectrum composition in diagnostic samples, when examined at progressively lower cut-off mutant frequency values in ultra-deep sequencing; (ii) how the frequency distribution of minority amino acid substitutions in SARS-CoV-2 compares with that of HCV sampled also from infected patients. The main conclusions are the following: (i) the number of different mutations found at low frequency in SARS-CoV-2 mutant spectra increases dramatically (50-to 100-fold) as the cut-off frequency for mutation detection is lowered from 0.5% to 0.1%, and (ii) that, contrary to HCV, SARS-CoV-2 mutant spectra exhibit a deficit of intermediate frequency amino acid substitutions. The possible origin and implications of mutant spectrum differences among RNA viruses are discussedThis work was supported by Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation (COVID-19 Research Call COV20/00181), and co-financed by European Development Regional Fund ‘A way to achieve Europe’. The work was also supported by grants CSIC-COV19-014 from Consejo Superior de Investigaciones Científicas (CSIC), project 525/C/2021 from Fundació La Marató de TV3, PID2020-113888RB-I00 from Ministerio de Ciencia e Innovación, BFU2017-91384-EXP from Ministerio de Ciencia, Innovación y Universidades (MCIU), PI18/00210 and PI21/00139 from Instituto de Salud Carlos III, and S2018/BAA-4370 (PLATESA2 from Comunidad de Madrid/FEDER). C.P., M.C., and P.M. are supported by the Miguel Servet programme of the Instituto de Salud Carlos III (CPII19/00001, CPII17/00006, and CP16/00116, respectively) cofinanced by the European Regional Development Fund (ERDF). CIBERehd (Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas) is funded by Instituto de Salud Carlos III. Institutional grants from the Fundación Ramón Areces and Banco Santander to the CBMSO are also acknowledged. The team at CBMSO belongs to the Global Virus Network (GVN). B.M.-G. is supported by predoctoral contract PFIS FI19/00119 from Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo) cofinanced by Fondo Social Europeo (FSE). R.L.-V. is supported by predoctoral contract PEJD-2019-PRE/BMD-16414 from Comunidad de Madrid. C.G.-C. is supported by predoctoral contract PRE2018-083422 from MCIU. P.S. is supported by postdoctoral contract “Margarita Salas” CA1/RSUE/2021 from MCIU. B.S. was supported by a predoctoral research fellowship (Doctorados Industriales, DI-17-09134) from Spanish MINEC

    Feasibility of using real-world free thyroxine data from the US and Europe to enable fast and efficient transfer of reference intervals from one population to another

    No full text
    Objectives: The direct approach for determining reference intervals (RIs) is not always practical. This study aimed to generate evidence that a real-world data (RWD) approach could be applied to transfer free thyroxine RIs determined in one population to a second population, presenting an alternative to performing multiple RI determinations. Design and methods: Two datasets (US, n = 10,000; Europe, n = 10,000) were created from existing RWD. Descriptive statistics, density plots and cumulative distributions were produced for each data set and comparisons made. Cumulative probabilities at the lower and upper limits of the RIs were identified using an empirical cumulative distribution function. According to these probabilities, estimated percentiles for each dataset and estimated differences between the two sets of percentiles were obtained by case resampling bootstrapping. The estimated differences were then evaluated against a pre-determined acceptance criterion of ≤7.8% (inter-individual biological variability). The direct approach was used to validate the RWD approach. Results: The RWD approach provided similar descriptive statistics for both populations (mean: US = 16.1 pmol/L, Europe = 16.4 pmol/L; median: US = 15.4 pmol/L, Europe = 15.8 pmol/L). Differences between the estimated percentiles at the upper and lower limits of the RIs fulfilled the pre-determined acceptance criterion and the density plots and cumulative distributions demonstrated population homogeneity. Similar RI distributions were observed using the direct approach. Conclusions: This study provides evidence that a RWD approach can be used to transfer RIs determined in one population to another
    corecore