6,009 research outputs found

    Myopic Loss Aversion and House-Money Effect Overseas: an experimental approach

    Get PDF
    Recent literature has found two behavioral effects - house-money and myopic loss aversion (MLA) - in several experimental designs. We show that although we can find a house-money effect using survey methods this evidence disappears when we study investment decision within a multi-period investment experiment. Loss aversion is found to govern the risk-taking behavior of subjects in dynamic settings, overcoming the house-money effect. These results are robust to experiments conducted in two different countries, Spain and Brazil.

    Further developments in stress initialization in geomechanics via FEM and a two-step procedure involving airy functions

    Get PDF
    The in-situ stress field in rock masses is a key aspect when a numerical analysis of a rock mass is carried out in any area of geo-engineering, such as civil, mining, or Oil & Gas. A method for the numerical generation of the in-situ stress state in the FE context, based on Airy stress functions was previously introduced. It involves two steps: 1) an estimate of the stress state at each Gauss point is generated, and 2) global equilibrium is verified and re-balancing nodal forces are applied as needed. In this paper, new developments towards improving the accuracy of the stress proposal are discussed. A real application example has been used to illustrate the results achieved with the new implementation

    Space Evaluation of Optical Modulators for Microwave Photonic On-Board Applications

    Get PDF
    Since several years, perspectives and assets offered by photonic technologies compared with their traditional RF counterparts (mass and volume reduction, transparency to RF frequency, RF isolation), make them particularly attractive for space applications [1] and, in particular, telecommunication satellites [2]. However, the development of photonic payload concepts have concurrently risen and made the problem of the ability of optoelectronic components to withstand space environment more and more pressing. Indeed, photonic components used in such photonic payloads architectures come from terrestrial networks applications in order to benefit from research and development in this field. This paper presents some results obtained in the frame of an ESA-funded project, carried out by Thales Alenia Space France, as prime contractor, and Alter Technology Group Spain (ATG) and Universidad Politecnica de Madrid (UPM), as subcontractors, one objective of which was to assess commercial high frequency optical intensity modulators for space use through a functional and environmental test campaign. Their potential applications in microwave photonic sub-systems of telecom satellite payloads are identified and related requirements are presented. Optical modulator technologies are reviewed and compared through, but not limited to, a specific figure of merit, taking into account two key features of these components : optical insertion loss and RF half-wave voltage. Some conclusions on these different technologies are given, on the basis of the test results, and their suitability for the targeted applications and environment is highlighted

    Pseudo-K\"ahler Lie algebras with abelian complex structures

    Full text link
    We study Lie algebras endowed with an abelian complex structure which admit a symplectic form compatible with the complex structure. We prove that each of those Lie algebras is completely determined by a pair (U,H) where U is a complex commutative associative algebra and H is a sesquilinear hermitian form on U which verifies certain compatibility conditions with respect to the associative product on U. The Riemannian and Ricci curvatures of the associated pseudo-K\"ahler metric are studied and a characterization of those Lie algebras which are Einstein but not Ricci flat is given. It is seen that all pseudo-K\"ahler Lie algebras can be inductively described by a certain method of double extensions applied to the associated complex asssociative commutative algebras

    Two hard spheres in a pore: Exact Statistical Mechanics for different shaped cavities

    Full text link
    The Partition function of two Hard Spheres in a Hard Wall Pore is studied appealing to a graph representation. The exact evaluation of the canonical partition function, and the one-body distribution function, in three different shaped pores are achieved. The analyzed simple geometries are the cuboidal, cylindrical and ellipsoidal cavities. Results have been compared with two previously studied geometries, the spherical pore and the spherical pore with a hard core. The search of common features in the analytic structure of the partition functions in terms of their length parameters and their volumes, surface area, edges length and curvatures is addressed too. A general framework for the exact thermodynamic analysis of systems with few and many particles in terms of a set of thermodynamic measures is discussed. We found that an exact thermodynamic description is feasible based in the adoption of an adequate set of measures and the search of the free energy dependence on the adopted measure set. A relation similar to the Laplace equation for the fluid-vapor interface is obtained which express the equilibrium between magnitudes that in extended systems are intensive variables. This exact description is applied to study the thermodynamic behavior of the two Hard Spheres in a Hard Wall Pore for the analyzed different geometries. We obtain analytically the external work, the pressure on the wall, the pressure in the homogeneous zone, the wall-fluid surface tension, the line tension and other similar properties

    Spin dynamics for bosons in an optical lattice

    Full text link
    We study the internal dynamics of bosonic atoms in an optical lattice. Within the regime in which the atomic crystal is a Mott insulator with one atom per well, the atoms behave as localized spins which interact according to some spin Hamiltonian. The type of Hamiltonian (Heisenberg, Ising), and the sign of interactions may be tuned by changing the properties of the optical lattice, or applying external magnetic fields. When, on the other hand, the number of atoms per lattice site is unknown, we can still use the bosons to perform general quantum computation

    Quantum simulation of small-polaron formation with trapped ions

    Full text link
    We propose a quantum simulation of small-polaron physics using a one-dimensional system of trapped ions acted upon by off-resonant standing waves. This system, envisioned as an array of microtraps, in the single-excitation case allows the realization of the anti-adiabatic regime of the Holstein model. We show that the strong excitation-phonon coupling regime, characterized by the formation of small polarons, can be reached using realistic values of the relevant system parameters. Finally, we propose measurements of the quasiparticle residue and the average number of phonons in the ground state, experimental probes validating the polaronic character of the phonon-dressed excitation.Comment: accepted for publication in Phys. Rev. Let

    Continuous H2O2 production sustained by anodic O2 for the destruction of the antibiotic ampicillin by photoelectro-Fenton process in a rotating cylinder electrode reactor

    Full text link
    Complete degradation of the antibiotic ampicillin (AMP) by photoelectro-Fenton (PEF) process has been addressed for the first time. Once produced from water oxidation at six Ti|IrO2 anodic plates, O2 was quickly transported by forced convection toward the central RCE, which consisted of a 316 stainless-steel cylinder covered with a (C-PTFE)-coated carbon cloth, thus ensuring the continuous production of H2O2 from the twoelectron O2 reduction reaction (ORR). The accumulated H2O2 reached a concentration of 83.3 mg L-1 H2O2 after 60 min in a 50 mM Na2SO4 solution at pH 3, operating at an RCE peripheral velocity U = 79.6 cm s-1 and fixed cathodic potential of Ecath = - 0.45 V vs. SHE. Furthermore, the optimum PEF conditions led to the complete destruction of 10 mg L-1 AMP in only 10 min upon addition of 0.4 mM Fe2+ as catalyst under UVA light irradiation, with a low electrolytic energy consumption of 0.211 kWh (g TOC)-1. In addition, the evolution of final carboxylic acids and inorganic ions over the electrolysis time was monitored by chromatographic and spectrophotometric techniques. PEF treatment clearly outperformed the anodic oxidation with (AO-H2O2) and the electro-Fenton (EF) processes, which opens the door to a sustainable and powerful electrochemical technology with no need for an air compressor for H2O2 production and viable under limitless sunlight irradiation

    Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls

    Get PDF
    We formulate a straightforward scheme of statistical mechanics for inhomogeneous systems that includes the virial series in powers of the activity for the grand free energy and density distributions. There, cluster integrals formulated for inhomogeneous systems play a main role. We center on second order terms that were analyzed in the case of hard-wall confinement, focusing in planar, spherical and cylindrical walls. Further analysis was devoted to the Lennard-Jones system and its generalization the 2k-k potential. For this interaction potentials the second cluster integral was evaluated analytically. We obtained the fluid-substrate surface tension at second order for the planar, spherical and cylindrical confinement. Spherical and cylindrical cases were analyzed using a series expansion in the radius including higher order terms. We detected a ln⁡R−1/R2\ln R^{-1}/R^{2} dependence of the surface tension for the standard Lennard-Jones system confined by spherical and cylindrical walls, no matter if particles are inside or outside of the hard-walls. The analysis was extended to bending and Gaussian curvatures, where exact expressions were also obtained.Comment: 15 pages, 6 figure
    • 

    corecore