7,642 research outputs found

    A cluster model with random anisotropy for hysteresis jumps in CeNi1−x_{1-x}Cux_{x} alloys

    Get PDF
    Some Cerium compounds exhibit hysteresis cycles with sharp macroscopic jumps in the magnetization at very low temperatures. This effect is attributed to the formation of clusters in which the anisotropy competes with the applied magnetic field. Here, we present a simple model where a lattice of ferromagnetically coupled spins is separated in clusters of random sizes and with random anisotropy. Within this model, we obtain hysteresis cycles presenting jumps that behave in a similar way that the experimental ones, and that disappear when increasing the temperature. The results are in good agreement with the hysteresis cycles measured at very low temperatures in CeNi1−x_{1-x}Cux_{x} and the comparison with these experimental results allows to discriminate the relative importance of the mechanisms driving the thermal evolution of the cycles.Comment: Accepted in PR

    Entropy and equilibrium state of free market models

    Full text link
    Many recent models of trade dynamics use the simple idea of wealth exchanges among economic agents in order to obtain a stable or equilibrium distribution of wealth among the agents. In particular, a plain analogy compares the wealth in a society with the energy in a physical system, and the trade between agents to the energy exchange between molecules during collisions. In physical systems, the energy exchange among molecules leads to a state of equipartition of the energy and to an equilibrium situation where the entropy is a maximum. On the other hand, in the majority of exchange models, the system converges to a very unequal condensed state, where one or a few agents concentrate all the wealth of the society while the wide majority of agents shares zero or almost zero fraction of the wealth. So, in those economic systems a minimum entropy state is attained. We propose here an analytical model where we investigate the effects of a particular class of economic exchanges that minimize the entropy. By solving the model we discuss the conditions that can drive the system to a state of minimum entropy, as well as the mechanisms to recover a kind of equipartition of wealth

    Electromagnetic emission of white dwarf binary mergers

    Get PDF
    It has been recently proposed that the ejected matter from white dwarf (WD) binary mergers can produce transient, optical and infrared emission similar to the "kilonovae" of neutron star (NS) binary mergers. To confirm this we calculate the electromagnetic emission from WD-WD mergers and compare with kilonova observations. We simulate WD-WD mergers leading to a massive, fast rotating, highly magnetized WD with an adapted version of the smoothed-particle-hydrodynamics (SPH) code Phantom. We thus obtain initial conditions for the ejecta such as escape velocity, mass and initial position and distribution. The subsequent thermal and dynamical evolution of the ejecta is obtained by integrating the energy-conservation equation accounting for expansion cooling and a heating source given by the fallback accretion onto the newly-formed WD and its magneto-dipole radiation. We show that magnetospheric processes in the merger can lead to a prompt, short gamma-ray emission of up to ≈1046\approx 10^{46} erg in a timescale of 0.10.1-11 s. The bulk of the ejecta initially expands non-relativistically with velocity 0.01c0.01 c and then it accelerates to 0.1c0.1 c due to the injection of fallback accretion energy. The ejecta become transparent at optical wavelengths around ∼7\sim 7 days post-merger with a luminosity 104110^{41}-104210^{42} erg s−1^{-1}. The X-ray emission from the fallback accretion becomes visible around ∼150\sim 150-200200 day post-merger with a luminosity of 103910^{39} erg s−1^{-1}. We also predict the post-merger time at which the central WD should appear as a pulsar depending on the value of the magnetic field and rotation period.Comment: 12 pages, Accepted for publication in JCA

    Randomised, controlled trial of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers : PRESSURE (pressure relieving support surfaces) trial

    Get PDF
    Objective To compare whether differences exist between alternating pressure overlays and alternating pressure mattresses in the development of new pressure ulcers, healing of existing pressure ulcers, and patient acceptability. Design Pragmatic, open, multicentre, randomised controlled trial. Setting 11 hospitals in six NHS trusts. Participants 1972 people admitted to hospital as acute or elective patients. Interventions Participants were randomised to an alternating pressure mattress (n = 982) of- an alternating pressure overlay (n = 990). Main outcome measures The proportion of participants developing a new pressure ulcer of grade 2 or worse; time to development of new pressure ulcers; proportions of participants developing a new ulcer within 30 days; healing of existing pressure ulcers; and patient acceptability Results Intention to treat analysis found no difference in the proportions of participants developing a new pressure ulcer of grade 2 or worse (10.7% overlay patients, 10.3% mattress patients; difference 0.4%, 95% confidence interval - 23% to 3.1%, P = 0.75). More overlay patients requested change owing to dissatisfaction (23.3%) than mattress patients (18.9%, P = 0.02). Conclusion No difference was found between alternating pressure mattresses and alternating pressure overlays in the proportion of people who develop a pressure ulcer

    Application of the S=1 underscreened Anderson lattice model to Kondo uranium and neptunium compounds

    Full text link
    Magnetic properties of uranium and neptunium compounds showing the coexistence of Kondo screening effect and ferromagnetic order are investigated within the Anderson lattice Hamiltonian with a two-fold degenerate ff-level in each site, corresponding to 5f25f^2 electronic configuration with S=1S=1 spins. A derivation of the Schrieffer-Wolff transformation is presented and the resulting Hamiltonian has an effective ff-band term, in addition to the regular exchange Kondo interaction between the S=1S=1 ff-spins and the s=1/2s=1/2 spins of the conduction electrons. The obtained effective Kondo lattice model can describe both the Kondo regime and a weak delocalization of 5f5f-electron. Within this model we compute the Kondo and Curie temperatures as a function of model parameters, namely the Kondo exchange interaction constant JKJ_K, the magnetic intersite exchange interaction JHJ_H and the effective ff-bandwidth. We deduce, therefore, a phase diagram of the model which yields the coexistence of Kondo effect and ferromagnetic ordering and also accounts for the pressure dependence of the Curie temperature of uranium compounds such as UTe.Comment: 9 pages, 4 figure

    Apoptosis y cáncer

    Get PDF

    Recent Developments in Engineering Measurements Lab

    Get PDF
    Over the past two years, the Engineering Measurements Lab has attempted to increase the breadth and depth of course material introduced to students to allow them to design and perform successful experimental tests. Over that time, the following structural changes have been made to this course: (i) a single lecture contact hour per week was added, (ii) lab contact hours focus more on practical aspects of each lab, and (iii) the number of experiments run in the course has increased from four to seven. To reflect these changes, the course has grown from one credit to two credits. Material for each lab was delivered in a two-week cycle with a one-hour lecture and two-hour lab period every week. Each lab had one dedicated lecture and additional lectures were added to further emphasize broader topics including data acquisition, measurement uncertainty, and statistical analysis. In addition to the updated course content, the Toyota A3 report format has been adopted for all labs to expose students to a wider variety of tools for technical communication and to foster a spirit of creative and innovative problem solving. In keeping with the iterative nature of these reports, the general process for each lab involves multiple events with feedback from peers and instructors. During the week “A†lab period, students are introduced to the lab facility and perform an ungraded activity where they manually perform relevant calculations using a small subset of previously recorded data. They are then presented with a full set of previous data so they can perform relevant calculations and plot pertinent information. This prelab data exercise is submitted before the week “B†lab period. During the week “B†lab period, students run the laboratory to generate their own data set. A draft A3 report is then submitted prior to the following week “A†lab period. Students peer-review the draft A3 reports in lab before they perform the manual activity for the next laboratory. Final A3 drafts are due at 11:59 pm the following day. Lab topics for this course include characterization of (i) vortex tubes, (ii) vapor compression refrigeration, (iii) centrifugal pumps, and (iv) frictional pipe losses. New labs have been developed for this course examining (v) error propagation in measurement of complex geometries, (vi) measuring Poiseuille flow velocity profiles, and (vii) thermocouple calibration. This work will describe the changes made to this course over the past two years and discuss their suitability based on effectiveness and student satisfaction. Plans for future development of the course will also be discussed
    • …
    corecore