10,236 research outputs found

    Modeling Two Dimensional Magnetic Domain Patterns

    Full text link
    Two-dimensional magnetic garnets exhibit complex and fascinating magnetic domain structures, like stripes, labyrinths, cells and mixed states of stripes and cells. These patterns do change in a reversible way when the intensity of an externally applied magnetic field is varied. The main objective of this contribution is to present the results of a model that yields a rich pattern structure that closely resembles what is observed experimentally. Our model is a generalized two-dimensional Ising-like spin-one Hamiltonian with long-range interactions, which also incorporates anisotropy and Zeeman terms. The model is studied numerically, by means of Monte Carlo simulations. Changing the model parameters stripes, labyrinth and/or cellular domain structures are generated. For a variety of cases we display the patterns, determine the average size of the domains, the ordering transition temperature, specific heat, magnetic susceptibility and hysteresis cycle. Finally, we examine the reversibility of the pattern evolution under variations of the applied magnetic field. The results we obtain are in good qualitative agreement with experiment.Comment: 8 pages, 12 figures, submitted to Phys. Rev.

    Glassy magnetic phase driven by short range charge and magnetic ordering in nanocrystalline La1/3_{1/3}Sr2/3_{2/3}FeO3−δ_{3-\delta}: Magnetization, Mossbauer, and polarised neutron studies

    Get PDF
    The charge ordered La1/3_{1/3}Sr2/3_{2/3}FeO3−δ_{3-\delta} (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M\"{o}ssbauer, and polarised neutron studies. A complex scenario of short range charge and magnetic ordering is realized from the polarised neutron studies in nanocrystalline specimen. This short range ordering does not involve any change in spin state and modification in the charge disproportion between Fe3+^{3+} and Fe5+^{5+} compared to bulk counterpart as evident in the M\"{o}ssbauer results. The refinement of magnetic diffraction peaks provides magnetic moments of Fe3+^{3+} and Fe5+^{5+} are about 3.15μB\mu_B and 1.57μB\mu_B for bulk, and 2.7μB\mu_B and 0.53μB\mu_B for nanocrystalline specimen, respectively. The destabilization of charge ordering leads to magnetic phase separation, giving rise to the robust exchange bias (EB) effect. Strikingly, EB field at 5 K attains a value as high as 4.4 kOe for average size ∼\sim 70 nm, which is zero for the bulk counterpart. A strong frequency dependence of ac susceptibility reveals cluster-glass like transition around ∼\sim 65 K, below which EB appears. Overall results propose that finite size effect directs the complex glassy magnetic behavior driven by unconventional short range charge and magnetic ordering, and magnetic phase separation appears in nanocrystalline LSFO.Comment: 10 pages, 9 figures. Fig. 1 available upon request or in http://www.ffn.ub.es/oscar/Articles.html. Accepted in Phys. Rev.

    Entropy and equilibrium state of free market models

    Full text link
    Many recent models of trade dynamics use the simple idea of wealth exchanges among economic agents in order to obtain a stable or equilibrium distribution of wealth among the agents. In particular, a plain analogy compares the wealth in a society with the energy in a physical system, and the trade between agents to the energy exchange between molecules during collisions. In physical systems, the energy exchange among molecules leads to a state of equipartition of the energy and to an equilibrium situation where the entropy is a maximum. On the other hand, in the majority of exchange models, the system converges to a very unequal condensed state, where one or a few agents concentrate all the wealth of the society while the wide majority of agents shares zero or almost zero fraction of the wealth. So, in those economic systems a minimum entropy state is attained. We propose here an analytical model where we investigate the effects of a particular class of economic exchanges that minimize the entropy. By solving the model we discuss the conditions that can drive the system to a state of minimum entropy, as well as the mechanisms to recover a kind of equipartition of wealth

    Comparisons for Esta-Task3: Cles and Cesam

    Get PDF
    We present the results of comparing three different implementations of the microscopic diffusion process in the stellar evolution codes CESAM and CLES. For each of these implementations we computed models of 1.0, 1.2 and 1.3 M⊙_{\odot}. We analyse the differences in their internal structure at three selected evolutionary stages, as well as the variations of helium abundance and depth of the stellar convective envelope. The origin of these differences and their effects on the seismic properties of the models are also considered.Comment: 10 pages, 8 figures, Joint HELAS and CoRoT/ESTA Workshop on Solar/Stellar Models and Seismic Analysis Tools, Novembre, Porto 2007 To be published in EAS Publications Serie

    Higher Order Variational Integrators: a polynomial approach

    Get PDF
    We reconsider the variational derivation of symplectic partitioned Runge-Kutta schemes. Such type of variational integrators are of great importance since they integrate mechanical systems with high order accuracy while preserving the structural properties of these systems, like the symplectic form, the evolution of the momentum maps or the energy behaviour. Also they are easily applicable to optimal control problems based on mechanical systems as proposed in Ober-Bl\"obaum et al. [2011]. Following the same approach, we develop a family of variational integrators to which we refer as symplectic Galerkin schemes in contrast to symplectic partitioned Runge-Kutta. These two families of integrators are, in principle and by construction, different one from the other. Furthermore, the symplectic Galerkin family can as easily be applied in optimal control problems, for which Campos et al. [2012b] is a particular case.Comment: 12 pages, 1 table, 23rd Congress on Differential Equations and Applications, CEDYA 201

    Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation

    Get PDF
    This work explored the production of volatile fatty acids (VFA) through the anaerobic digestion of sewage sludge (SS). The first experiment took place at batch scale to evaluate the combined effect of using a thermal pre- treatment (120 \ub0C, 15 min) and different Substrate/Inoculum ratios (S/I) (1, 2, 4 and 6 g VS substrate/g VS inoculum) on the acidogenic potential of the SS. The results showed that the thermal pre-treatment influenced positively the degree of acidification of the SS at low S/I ratios, reaching maximum of 45%. Afterwards, a continuous lab-scale experiment, was set-up to study two ranges of organic loading rates (OLR): 1300\u20131600 mg COD L 121 d 121 and 2400\u20133500 mg COD L 121 d 121 . The highest degree of acidification (22%) was achieved at the lowest OLR. Analysis of the microbial community in the reactor revealed that OTUs most abundant present genes related with amino acids and carbohydrates fermentation being crucial for VFA production

    Why, when, and how fast innovations are adopted

    Full text link
    When the full stock of a new product is quickly sold in a few days or weeks, one has the impression that new technologies develop and conquer the market in a very easy way. This may be true for some new technologies, for example the cell phone, but not for others, like the blue-ray. Novelty, usefulness, advertising, price, and fashion are the driving forces behind the adoption of a new product. But, what are the key factors that lead to adopt a new technology? In this paper we propose and investigate a simple model for the adoption of an innovation which depends mainly on three elements: the appeal of the novelty, the inertia or resistance to adopt it, and the interaction with other agents. Social interactions are taken into account in two ways: by imitation and by differentiation, i.e., some agents will be inclined to adopt an innovation if many people do the same, but other will act in the opposite direction, trying to differentiate from the "herd". We determine the conditions for a successful implantation of the new technology, by considering the strength of advertising and the effect of social interactions. We find a balance between the advertising and the number of anti-herding agents that may block the adoption of a new product. We also compare the effect of social interactions, when agents take into account the behavior of the whole society or just a part of it. In a nutshell, the present model reproduces qualitatively the available data on adoption of innovation.Comment: 11 pages, 13 figures (with subfigures), full paper (EPJB 2012) on innovation adoption mode

    Comparison of experimental and numerical sloshing loads in partially filled tanks

    Get PDF
    Sloshing phenomenon consists in the movement of liquids inside partially filled tanks, whichgenerates dynamic loads on the tank structure. Resulting impact pressures are of great importance in assessingstructural strength, and their correct evaluation still represents a challenge for the designer due to the highnonlinearities involved, with complex free surface deformations, violent impact phenomena and influence of airtrapping. In the present paper a set of two-dimensional cases for which experimental results are available areconsidered to assess merits and shortcomings of different numerical methods for sloshing evaluation, namely twocommercial RANS solvers (FLOW-3D and LS-DYNA), and two own developed methods (Smoothed ParticleHydrodynamics and RANS). Impact pressures at different critical locations and global moment induced by watermotion for a partially filled tank with rectangular section having a rolling motion have been evaluated and resultsare compared with experiments
    • …
    corecore