30 research outputs found

    Nearshore euxinia in the photic zone of an ancient sea:Part II – The bigger picture and implications for understanding ocean anoxia

    Get PDF
    Biomarker, palaeontological and isotopic evidence suggests that the Late Permian carbonate seas, i.e. the Northern (NPB) and Southern (SPB) Permian basins of northern Pangea, were characterized by significant spatial and temporal variations in the palaeowater-column redox state. This is particularly the case with regard to the deposition of the Lopingian Zechstein cycle 2 carbonate rocks. A shelf to basin reconstruction of environmental conditions was achieved by analysing nearly 400 core samples from 49 wells. This allowed an evaluation of the spatial variations in facies and broad oceanographic conditions at the basin scale. Specifically, in the lower slope and shallow-basin facies of the northern margin of the SPB (present-day northern Poland and eastern Germany), highly variable concentrations of the green sulphur bacterial biomarkers chlorobactane and isorenieratane (and their likely degradation products, C15 to C31 2,3,6-aryl isoprenoids, indicative of photic zone euxinia) and homohopane indices (indicative of anoxia), combined with the presence of a benthic fauna and bioturbation, indicate a variable but occasionally anoxic/euxinic water column. Locally in lagoonal facies in the northern and southern margin of the SPB, euxinic conditions also developed but these were likely associated with localised conditions or benthic production in association with microbialites. The presence of gammacerane in the eastern SPB (south-eastern Germany and eastern Poland) suggests elevated salinities there, compatible with the restricted configuration of the basin. However, a lack of these signatures in basinal settings of the eastern SPB indicates that strongly reducing conditions were restricted to the lower slope and shallow-basin locations and restricted lagoons, and were not developed in the basin centre. Moreover, this anoxia/euxinia in marginal settings is restricted to the north-eastern part of the SPB. The south-eastern part of the SPB (SE Poland), in contrast, is devoid of evidence for PZE. The southern margin of the SPB is also characterized by generally oxic-suboxic conditions, with local anoxia limited to more restricted embayments, and elevated salinities limited to restricted oxic-anoxic lagoons. In the western SPB (NE England and adjacent offshore) and the NPB (Outer Moray Firth, offshore Scotland) the water columns were oxic-suboxic. Overall, it appears that high but episodic primary bioproductivity of organic matter was concentrated on (or even limited to) the lower slopes of the SPB's north-eastern margin and the restricted lagoons and shallow basin of its southern margin, leading to the formation of source rocks for petroleum in these areas. In addition, the temporal and geographical restriction of anoxia appears to have prevented the accumulation of large and more widespread quantities of organic matter; in fact TOC contents exhibit a poor correlation with ecological and anoxia indicators. Crucially, this work confirms that the strong evidence for PZE observed in shelf and lower slope/shallow-basin facies of the north-eastern SPB need not be associated with widespread, basin-scale anoxia; this conclusion has implications for organic matter burial, carbon cycling and biotic crises during other times in Earth history

    A Southern Hemisphere record of global trace-metal drawdown and orbital modulation of organic-matter burial across the Cenomanian–Turonian boundary (Ocean Drilling Program Site 1138, Kerguelen Plateau)

    Get PDF
    Despite its assumed global nature, there are very few detailed stratigraphic records of the late Cenomanian to the early Turonian Oceanic Anoxic Event 2 from the Southern Hemisphere. A highly resolved record of environmental changes across the Cenomanian\u2013Turonian boundary interval is presented from Ocean Drilling Program Site 1138 on the central Kerguelen Plateau (southern Indian Ocean). The new data lead to three key observations. Firstly, detailed biostratigraphy and chemostratigraphy indicate that the record of Oceanic Anoxic Event 2 is not complete, with a hiatus spanning the onset of the event. A decrease in glauconite and highly weathered clays after the onset of Oceanic Anoxic Event 2 marks the end of the hiatus interval, which can be explained by a relative sea-level rise that increased sediment accommodation space on the Kerguelen Plateau margin. This change in depositional environment controlled the timing of the delayed peak in organic-matter burial during Oceanic Anoxic Event 2 at Site 1138 compared with other Oceanic Anoxic Event 2 locations worldwide. A second key observation is the presence of cyclic fluctuations in the quantity and composition of organic matter being buried on the central Kerguelen Plateau throughout the latter stages of Oceanic Anoxic Event 2 and the early Turonian. A close correspondence between organic matter, sedimentary elemental compositions and sediments recording sea-floor oxygenation suggests that the cycles were mainly productivity-driven phenomena. Available age-control points constrain the periodicity of the coupled changes in sedimentary parameters to ca 20 to 70 ka, suggesting a link between carbon burial and astronomically forced climatic variations (precession or obliquity) in the Southern Hemisphere mid-latitudes both during, and after, Oceanic Anoxic Event 2: fluctuations that were superimposed on the impact of global-scale processes. Finally, trace-metal data from the black-shale unit at Site 1138 provide the first evidence from outside of the proto-North Atlantic region for a global drawdown of seawater trace-metal (Mo) inventories during Oceanic Anoxic Event 2

    No effect of thermal maturity on the Mo-, U-, Cd- and Zn-isotope compositions of Lower Jurassic organic-rich sediments

    Get PDF
    The isotope ratios of redox-sensitive metals in organic-rich rocks are critical tools for quantifying the timing and severity of deoxygenation and nutrient cycling in Earth’s past. The resilience of isotopic data to thermal alteration of the host sediments over millions of years of burial is, however, largely unknown. We present molybdenum, uranium, cadmium, and zinc stable-isotope data from two stratigraphic successions of the same Lower Jurassic Posidonienschiefer unit in the Lower Saxony Basin of northern Germany that were affected by different burial histories. We show that thermal maturity had no effect on the isotopic compositions of these elements but does appear to have increased their concentrations in the rock. The data corroborate the results of laboratory-based maturation studies and provide constraints on the Mo, U, Cd, and Zn isotopic compositions of ca. 182 Ma seawater in the Lower Saxony Basin

    No effect of thermal maturity on the Mo, U, Cd, and Zn isotope compositions of Lower Jurassic organic-rich sediments

    Get PDF
    This is the final version. Available on open access from the Geological Society of America via the DOI in this recordThe isotope ratios of redox-sensitive metals in organic-rich rocks are critical tools for quantifying the timing and severity of deoxygenation and nutrient cycling in Earth's past. The resilience of isotopic data to thermal alteration of the host sediments over millions of years of burial is, however, largely unknown. We present molybdenum, uranium, cadmium, and zinc stable-isotope data from two stratigraphic successions of the same Lower Jurassic Posidonienschiefer unit in the Lower Saxony Basin of northern Germany that were affected by different burial histories. We show that thermal maturity had no effect on the isotopic compositions of these elements but does appear to have increased their concentrations in the rock. The data corroborate the results of laboratory-based maturation studies and provide constraints on the Mo, U, Cd, and Zn isotopic compositions of ca. 182 Ma seawater in the Lower Saxony Basin.Shell Global Solutions International B.

    Initial results of coring at Prees, Cheshire Basin, UK (ICDP JET project): towards an integrated stratigraphy, timescale, and Earth system understanding for the Early Jurassic

    Get PDF
    This is the final version. Available on open access from Copernicus Publications via the DOI in this recordData availability: Full core scan data (https://doi.org/10.5285/91392f09-25d4-454c-aece-56bde0dbf3ba, BGS Core Scanning Facility, 2022) will be available after 1 November 2024 via the Natural Environment Research Council (NERC) National Geoscience Data Centre (https://webapps.bgs.ac.uk/services/ngdc/accessions/index.html#, last access: 12 October 2023). Downhole logging data (https://doi.org/10.5880/ICDP.5065.001​​​​​​​, Wonik, 2023) will be made available via the ICDP (https://www.icdp-online.org/projects/by-continent/europe/jet-uk/, last access: 12 October 2023). The JET Operational Report is published as Hesselbo et al. (2023); full information about the operational dataset, the logging dataset, data availability and the explanatory remarks is available on the ICPD-JET project website: https://www.icdp-online.org/projects/by-continent/europe/jet-uk/ (last access: 12 October 2023). A subset of data, additional biostratigraphic tables, and vector graphics files for Figs. 3–5 are included as the Supplement. Supplementary Data File 1 tabulates the corrected depth scale for Prees 2C. Supplementary Data File 2 summarizes the ammonite-based chronostratigraphy of the Prees 2 cores (ammonite identifications by Kevin N. Page). Supplementary Data File 3 summarizes the ammonite-based chronostratigraphy for the Hettangian to Early Pliensbachian of the Llanbedr (Mochras Farm) borehole (updated by Kevin N. Page). Supplementary Data File 4 tabulates the organic carbon-isotope ratios, TOC, and carbonate content of low-resolution samples taken at the Prees drill site; TOC and carbonate data are calculated using calibration based on portable XRF (Supplementary Data File 5) and a gas source isotope ratio mass spectrometer (Supplementary Data File 6). Supplementary Data File 5 tabulates portable XRF results for bulk rock powders of low-resolution samples taken at the Prees drill site; uncertainties stated in the table are given for the fit to the raw data and do not reflect the true reproducibility of the data. Empty fields indicate values under the detection limit. Sample SSK116001 acted as a repeat sample which was measured 70 times over the course of the data acquisition to determine the repeatability and drift of the instrument. LE stands for “light elements”. Supplementary Data File 6 tabulates gas source isotope ratio mass spectrometry (GS-IRMS) data (oxygen- and carbon-isotope ratios of carbonate as well as carbonate content calculated as calcite) for a set of 24 samples covering the entire core length and reflecting a representative spread of carbonate content. Comparison of GS-IRMS data with p-XRF data was used to create a calibration curve to calculate the carbonate (and TOC) content of all low-resolution samples. Supplementary Data File 7 tabulates pyrolysis data (Rock-Eval 6) for Prees 1 well cuttings and Wilkesley borehole samples. Supplementary Data File 8 contains vector graphics files (.svg) for Figs. 3–5.Drilling for the International Continental Scientific Drilling Program (ICDP) Early Jurassic Earth System and Timescale project (JET) was undertaken between October 2020 and January 2021. The drill site is situated in a small-scale synformal basin of the latest Triassic to Early Jurassic age that formed above the major Permian–Triassic half-graben system of the Cheshire Basin. The borehole is located to recover an expanded and complete succession to complement the legacy core from the Llanbedr (Mochras Farm) borehole drilled through 1967–1969 on the edge of the Cardigan Bay Basin, North Wales. The overall aim of the project is to construct an astronomically calibrated integrated timescale for the Early Jurassic and to provide insights into the operation of the Early Jurassic Earth system. Core of Quaternary age cover and Early Jurassic mudstone was obtained from two shallow partially cored geotechnical holes (Prees 2A to 32.2 m below surface (m b.s.) and Prees 2B to 37.0 m b.s.) together with Early Jurassic and Late Triassic mudstone from the principal hole, Prees 2C, which was cored from 32.92 to 651.32 m (corrected core depth scale). Core recovery was 99.7 % for Prees 2C. The ages of the recovered stratigraphy range from the Late Triassic (probably Rhaetian) to the Early Jurassic, Early Pliensbachian (Ibex Ammonoid Chronozone). All ammonoid chronozones have been identified for the drilled Early Jurassic strata. The full lithological succession comprises the Branscombe Mudstone and Blue Anchor formations of the Mercia Mudstone Group, the Westbury and Lilstock formations of the Penarth Group, and the Redcar Mudstone Formation of the Lias Group. A distinct interval of siltstone is recognized within the Late Sinemurian of the Redcar Mudstone Formation, and the name “Prees Siltstone Member” is proposed. Depositional environments range from playa lake in the Late Triassic to distal offshore marine in the Early Jurassic. Initial datasets compiled from the core include radiography, natural gamma ray, density, magnetic susceptibility, and X-ray fluorescence (XRF). A full suite of downhole logs was also run. Intervals of organic carbon enrichment occur in the Rhaetian (Late Triassic) Westbury Formation and in the earliest Hettangian and earliest Pliensbachian strata of the Redcar Mudstone Formation, where up to 4 % total organic carbon (TOC) is recorded. Other parts of the succession are generally organic-lean, containing less than 1 % TOC. Carbon-isotope values from bulk organic matter have also been determined, initially at a resolution of ∼ 1 m, and these provide the basis for detailed correlation between the Prees 2 succession and adjacent boreholes and Global Stratotype Section and Point (GSSP) outcrops. Multiple complementary studies are currently underway and preliminary results promise an astronomically calibrated biostratigraphy, magnetostratigraphy, and chemostratigraphy for the combined Prees and Mochras successions as well as insights into the dynamics of background processes and major palaeo-environmental changes.ICDPNatural Environment Research Council (NERC)German Research FoundationHungarian Scientific Research FundNational Science Centre, PolandPolish Geological Institut

    Corrigendum to "Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous)" [Geochim. Cosmochim. Acta 178 (2016) 291-306]

    No full text
    A recent molybdenum-isotope estimate of the extent of anoxic and euxinic conditions in the world ocean during Oceanic Anoxic Event 2 (~94 Ma) concluded by discussing a contrast between the new results with existing estimates of marine euxinia based on sulphur isotopes. This suggested contrast was erroneous; when areal extents of marine anoxia and euxinia are calculated for both isotopic proxies, the agreement is actually striking, and highlights the fact that large areas of the global ocean probably remained well ventilated during this event

    Corrigendum to "Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous)" [Geochim. Cosmochim. Acta 178 (2016) 291-306]

    Get PDF
    A recent molybdenum-isotope estimate of the extent of anoxic and euxinic conditions in the world ocean during Oceanic Anoxic Event 2 (~94 Ma) concluded by discussing a contrast between the new results with existing estimates of marine euxinia based on sulphur isotopes. This suggested contrast was erroneous; when areal extents of marine anoxia and euxinia are calculated for both isotopic proxies, the agreement is actually striking, and highlights the fact that large areas of the global ocean probably remained well ventilated during this event
    corecore