12 research outputs found
Generation of two human iPSC lines, FINCBi002-A and FINCBi003-A, carrying heteroplasmic macrodeletion of mitochondrial DNA causing Pearson's syndrome
Pearson marrow pancreas syndrome (PMPS) is a sporadic mitochondrial disease, resulting from the clonal expansion of a mutated mitochondrial DNA (mtDNA) molecule bearing a macro-deletion, and therefore missing essential genetic information. PMPS is characterized by the presence of deleted (Î) mtDNA that co-exist with the presence of a variable amount of wild-type mtDNA, a condition termed heteroplasmy. All tissues of the affected individual, including the haemopoietic system and the post-mitotic, highly specialized tissues (brain, skeletal muscle, and heart) contain the large-scale mtDNA deletion in variable amount. We generated human induced pluripotent stem cells (hiPSCs) from two PMPS patients, carrying different type of large-scale deletion
Generation of a human iPSC line, FINCBi001-A, carrying a homoplasmic m.G3460A mutation in MT-ND1 associated with Leber's Hereditary optic Neuropathy (LHON)
Leber's Hereditary Optic Neuropathy (LHON) is a maternally inherited disorder caused by homoplasmic mutations of mitochondrial DNA (mtDNA). LHON is characterized by the selective degeneration of the retinal ganglion cells (RGC). Almost all LHON maternal lineages are homoplasmic mutant (100% mtDNA copies are mutant) for one of three frequent mtDNA mutations now found in over 90% of patients worldwide (m.11778G > A/MT-ND4, m.3460G > A/MT-ND1, m.14484 T > C/MT-ND6). Human induced pluripotent stem cells (hiPSCs) were generated from a patient carrying the homoplasmic m.3460G > A/MT-ND1 mutation using the Sendai virus non-integrating virus
Pharmacological Inhibition of Necroptosis Protects from Dopaminergic Neuronal Cell Death in Parkinson's Disease Models
Dysfunctions in mitochondrial dynamics and metabolism are common pathological processes associated with Parkinson's disease (PD). It was recently shown that an inherited form of PD and dementia is caused by mutations in the OPA1 gene, which encodes for a key player in mitochondrial fusion and structure. iPSC-derived neural cells from these patients exhibited severe mitochondrial fragmentation, respiration impairment, ATP deficits, and heightened oxidative stress. Reconstitution of normal levels of OPA1 in PD-derived neural cells normalized mitochondria morphology and function. OPA1-mutated neuronal cultures showed reduced survival in vitro. Intriguingly, selective inhibition of necroptosis effectively rescued this survival deficit. Additionally, dampening necroptosis in MPTP-treated mice protected from DA neuronal cell loss. This human iPSC-based model captures both early pathological events in OPA1 mutant neural cells and the beneficial effects of blocking necroptosis, highlighting this cell death process as a potential therapeutic target for PD. Iannielli et al. generate iPSCs from Parkinson's disease patients with OPA1 mutations and find that derived NPCs have mitochondria with impaired morphology and bioenergetics. Nec-1s, a pharmacological inhibitor of necroptosis, promotes the survival of human OPA1 mutant neurons and attenuates dopaminergic neuronal loss in MPTP-treated mice
The relevance of mitochondrial DNA variants fluctuation during reprogramming and neuronal differentiation of human iPSCs
The generation of inducible pluripotent stem cells (iPSCs) is a revolutionary technique allowing production of pluripotent patient-specific cell lines used for disease modeling, drug screening, and cell therapy. Integrity of nuclear DNA (nDNA) is mandatory to allow iPSCs utilization, while quality control of mitochondrial DNA (mtDNA) is rarely included in the iPSCs validation process. In this study, we performed mtDNA deep sequencing during the transition from parental fibroblasts to reprogrammed iPSC and to differentiated neuronal precursor cells (NPCs) obtained from controls and patients affected by mitochondrial disorders. At each step, mtDNA variants, including those potentially pathogenic, fluctuate between emerging and disappearing, and some having functional implications. We strongly recommend including mtDNA analysis as an unavoidable assay to obtain fully certified usable iPSCs and NPCs.Peer reviewe
Pathological mitophagy disrupts mitochondrial homeostasis in Leber's hereditary optic neuropathy
Leber's hereditary optic neuropathy (LHON), a disease associated with a mitochondrial DNA mutation, is characterized by blindness due to degeneration of retinal ganglion cells (RGCs) and their axons, which form the optic nerve. We show that a sustained pathological autophagy and compartment-specific mitophagy activity affects LHON patient-derived cells and cybrids, as well as induced pluripotent-stem-cell-derived neurons. This is variably counterbalanced by compensatory mitobiogenesis. The aberrant quality control disrupts mitochondrial homeostasis as reflected by defective bioenergetics and excessive reactive oxygen species production, a stress phenotype that ultimately challenges cell viability by increasing the rate of apoptosis. We counteract this pathological mechanism by using autophagy regulators (clozapine and chloroquine) and redox modulators (idebenone), as well as genetically activating mitochondrial biogenesis (PGC1-α overexpression). This study substantially advances our understanding of LHON pathophysiology, providing an integrated paradigm for pathogenesis of mitochondrial diseases and druggable targets for therapy
Reconstitution of the Human Nigro-striatal Pathway on-a-Chip Reveals OPA1-Dependent Mitochondrial Defects and Loss of Dopaminergic Synapses
Stem cell-derived neurons are generally obtained in mass cultures that lack both spatial organization and any meaningful connectivity. We implement a microfluidic system for long-term culture of human neurons with patterned projections and synaptic ter- minals. Co-culture of human midbrain dopaminergic and striatal medium spiny neurons on the microchip establishes an orchestrated nigro-striatal circuitry with functional dopaminergic synapses. We use this platform to dissect the mitochondrial dysfunc- tions associated with a genetic form of Parkinsonâs disease (PD) with OPA1 mutations. Remarkably, we find that axons of OPA1 mutant dopaminergic neu- rons exhibit a significant reduction of mitochondrial mass. This defect causes a significant loss of dopa- minergic synapses, which worsens in long-term cultures. Therefore, PD-associated depletion of mitochondria at synapses might precede loss of neuronal connectivity and neurodegeneration. In vitro reconstitution of human circuitries by micro- fluidic technology offers a powerful system to study brain networks by establishing ordered neuronal compartments and correct synapse identity
Modeling native and seeded Synuclein aggregation and related cellular dysfunctions in dopaminergic neurons derived by a new set of isogenic iPSC lines with SNCA multiplications
International audienceTriplication of the SNCA gene, encoding the protein alpha-Synuclein (αSyn), is a rare cause of aggressive and early-onset parkinsonism. Herein, we generated iPSCs from two siblings with a recently described compact SNCA gene triplication and suffering from severe motor impairments, psychiatric symptoms, and cognitive deterioration. Using CRISPR/Cas9 gene editing, each SNCA copy was inactivated by targeted indel mutations generating a panel of isogenic iPSCs with a decremental number from 4 down to none of functional SNCA gene alleles. We differentiated these iPSC lines in midbrain dopaminergic (DA) neuronal cultures to characterize αSyn aggregation in native and seeded conditions and evaluate its associated cellular dysfunctions. Utilizing a new nanobody-based biosensor combined with super-resolved imaging, we were able to visualize and measure αSyn aggregates in early DA neurons in unstimulated conditions. Calcium dysregulation and mitochondrial alterations were the first pathological signs detectable in early differentiated DA neuronal cultures. Accelerated αSyn aggregation was induced by exposing neurons to structurally well-characterized synthetic αSyn fibrils. 4xSNCA DA neurons showed the highest vulnerability, which was associated with high levels of oxidized DA and amplified by TAX1BP1 gene disruption. Seeded DA neurons developed large αSyn deposits whose morphology and internal constituents resembled Lewy bodies commonly observed in Parkinson's disease (PD) patient brain tissues. These findings provide strong evidence that this isogenic panel of iPSCs with SNCA multiplications offers a remarkable cellular platform to investigate mechanisms of PD and validate candidate inhibitors of native and seeded αSyn aggregation
Generation of iPSCs from identical twin, one affected by LHON and one unaffected, both carrying a combination of two mitochondrial variants: m.14484Â T>C and m.10680G>A
Leber hereditary optic neuropathy (LHON) is one of the most common mitochondrial illness, causing retinal ganglion cell degeneration and central vision loss. It stems from point mutations in mitochondrial DNA (mtDNA), with key mutations being m.3460GÂ >Â A, m.11778GÂ >Â A, and m.14484Â TÂ >Â C. Fibroblasts from identical twins, sharing m.14484Â TÂ >Â C and m.10680GÂ >Â A variants each with 70Â % heteroplasmy, were used to generate iPSC lines. Remarkably, one twin, a LHON patient, displayed symptoms, while the other, a carrier, remained asymptomatic. These iPSCs offer a valuable tool for studying factors influencing disease penetrance and unravelling the role of m.10680GÂ >Â A, which is still debated