1,425 research outputs found

    Rapid Plasma Exsolution from an A-site Deficient Perovskite Oxide at Room Temperature

    Get PDF
    The research was supported by EPSRC (Award Nos. EP/R023522/1, EP/R023603/1, EP/R023921/1, EP/R023638/1, EP/R008841/1, and EP/V055232/1) and financial support from the UK Catalysis Hub funded by EPSRC Grant reference EP/R027129/1. J.W. and S.C.P. gratefully acknowledge support from the EPSRC (EP/P007821/1) and also thank the U.K. ARCHER HPC facility and the THOMAS HPC (the UK Materials and Molecular Modelling Hub, partially funded by EPSRC EP/P020194) for providing computation resources, via the membership of the UK's HEC Materials Chemistry Consortium (funded by the EPSRC Grant Nos. EP/L000202, EP/709 P007821/1, EP/R029431, and EP/T022213).High‐performance nanoparticle platforms can drive catalysis progress to new horizons, delivering environmental and energy targets. Nanoparticle exsolution offers unprecedented opportunities that are limited by current demanding process conditions. Unraveling new exsolution pathways, particularly at low‐temperatures, represents an important milestone that will enable improved sustainable synthetic route, more control of catalysis microstructure as well as new application opportunities. Herein it is demonstrated that plasma direct exsolution at room temperature represents just such a step change in the synthesis. Moreover, the factors that most affect the exsolution process are identified. It is shown that the surface defects produced initiate exsolution under a brief ion bombardment of an argon low‐pressure and low‐temperature plasma. This results in controlled nanoparticles with diameters ≈19–22 nm with very high number densities thus creating a highly active catalytic material for CO oxidation which rivals traditionally created exsolved samples.Publisher PDFPeer reviewe

    Perturbative nonequilibrium dynamics of phase transitions in an expanding universe

    Get PDF
    A complete set of Feynman rules is derived, which permits a perturbative description of the nonequilibrium dynamics of a symmetry-breaking phase transition in λϕ4\lambda\phi^4 theory in an expanding universe. In contrast to a naive expansion in powers of the coupling constant, this approximation scheme provides for (a) a description of the nonequilibrium state in terms of its own finite-width quasiparticle excitations, thus correctly incorporating dissipative effects in low-order calculations, and (b) the emergence from a symmetric initial state of a final state exhibiting the properties of spontaneous symmetry breaking, while maintaining the constraint 0\equiv 0. Earlier work on dissipative perturbation theory and spontaneous symmetry breaking in Minkowski spacetime is reviewed. The central problem addressed is the construction of a perturbative approximation scheme which treats the initial symmetric state in terms of the field ϕ\phi, while the state that emerges at later times is treated in terms of a field ζ\zeta, linearly related to ϕ2\phi^2. The connection between early and late times involves an infinite sequence of composite propagators. Explicit one-loop calculations are given of the gap equations that determine quasiparticle masses and of the equation of motion for and the renormalization of these equations is described. The perturbation series needed to describe the symmetric and broken-symmetry states are not equivalent, and this leads to ambiguities intrinsic to any perturbative approach. These ambiguities are discussed in detail and a systematic procedure for matching the two approximations is described.Comment: 22 pages, using RevTeX. 6 figures. Submitted to Physical Review

    How effective are programs at managing transition from hospital to home? A case study of the Australian transition care program

    Get PDF
    Extent: 5p.Background: An increasing demand for acute care services due in part to rising proportions of older people and increasing rates of chronic diseases has led to new models of post-acute care for older people that offer coordinated discharge, ongoing support and often a focus on functional restoration. Overall, review of the literature suggests there is considerable uncertainty around the effectiveness and resource implications of the various model configurations and delivery approaches. In this paper, we review the current evidence on the efficacy of such programs, using the Australian Transition Care Program as a case study. Discussion: The Australian Transition Care Program was established at the interface of the acute and aged care sectors with particular emphasis on transitions between acute and community care. The program is intended to enable a significant proportion of care recipients to return home, rather than prematurely enter residential aged care, optimize their functional capacity, and reduce inappropriate extended lengths of hospital stay for older people. Broadly, the model is configured and targeted in accordance with programs reported in the international literature to be effective. Early evaluations suggest good acceptance of the program by hospitals, patients and staff. Ultimately, however, the program's place in the array of post-acute services should be determined by its demonstrated efficacy relative to other services which cater for similar patient groups. Summary: Currently there is a lack of robust evaluation to provide convincing evidence of efficacy, either from a patient outcome or cost reduction perspective. As the program expands and matures, there will be opportunity to scrutinise the systematic effects, with lessons for both Australian and international policy makers and clinical leaders.Leonard C Gray, Nancye M Peel, Maria Crotty, Susan E Kurrle, Lynne C Giles, and Ian D Camero

    High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment; A Prelude to an alpha-Omega Dynamo

    Full text link
    The Ω\Omega-phase of the liquid sodium α\alpha-Ω\Omega dynamo experiment at NMIMT in cooperation with LANL has successfully demonstrated the production of a high toroidal field, Bϕ8×BrB_{\phi} \simeq 8\times B_r from the radial component of an applied poloidal magnetic field, BrB_r. This enhanced toroidal field is produced by rotational shear in stable Couette flow within liquid sodium at Rm120Rm \simeq 120. The small turbulence in stable Taylor-Couette flow is caused by Ekman flow where (δv/v)2103 (\delta v/v)^2 \sim 10^{-3} . This high Ω\Omega-gain in low turbulence flow contrasts with a smaller Ω\Omega-gain in higher turbulence, Helmholtz-unstable shear flows. This result supports the ansatz that large scale astrophysical magnetic fields are created within semi-coherent large scale motions in which turbulence plays only a smaller diffusive role that enables magnetic flux linkage.Comment: 5 pages, 5 figures, submitted PRL revised version: add one author, minor typo'

    Effect of scavenger receptor BI antagonist ITX5061 in patients with hepatitis C virus infection undergoing liver transplantation

    Get PDF
    Hepatitis C virus (HCV) entry inhibitors have been hypothesized to prevent infection of the liver after transplantation. ITX5061 is a Scavenger Receptor B-I (SR-BI) antagonist that blocks HCV entry and infection in vitro. We assessed the safety and efficacy of ITX5061 to limit HCV infection of the graft. The study included 23 HCV infected patients undergoing liver transplantation. The first 13 "control" patients did not receive drug. The subsequent 10 patients received ITX5061 150 mg immediately pre- and post-transplant, and daily for 1 week thereafter. ITX5061 pharmacokinetics and plasma HCV RNA were quantified. Viral genetic diversity was measured by ultradeep pyrosequencing. ITX5061 was well tolerated with measurable plasma concentrations during therapy. Whilst the median HCV RNA reduction was greater in ITX treated patients at all time points in the first week after transplantation there was no difference in the overall change in the area over the HCV RNA curve in the 7-day treatment period. However, in genotype 1 infected patients treatment was associated with a sustained reduction in HCV RNA levels compared to the control group (area over the HCV RNA curve analysis, p=0.004). Ultradeep pyrosequencing revealed a complex and evolving pattern of HCV variants infecting the graft during the first week. ITX5061 significantly limited viral evolution where the median divergence between day 0 and day 7 was 3.5% in the control group compared to 0.1% in the treated group.CONCLUSIONS: ITX5061 reduces plasma HCV RNA post transplant notably in genotype 1 infected patients and slows viral evolution. Following liver transplantation the likely contribution of extrahepatic reservoirs of HCV necessitates combining entry inhibitors such as ITX5061 with inhibitors of replication in future studies. Clinicaltrials.gov NCT01292824. This article is protected by copyright. All rights reserved.</p

    Pellino-1 Regulates the Responses of the Airway to Viral Infection

    Get PDF
    Exposure to respiratory pathogens is a leading cause of exacerbations of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Pellino-1 is an E3 ubiquitin ligase known to regulate virally-induced inflammation. We wished to determine the role of Pellino-1 in the host response to respiratory viruses in health and disease. Pellino-1 expression was examined in bronchial sections from patients with GOLD stage two COPD and healthy controls. Primary bronchial epithelial cells (PBECs) in which Pellino-1 expression had been knocked down were extracellularly challenged with the TLR3 agonist poly(I:C). C57BL/6 Peli1-/- mice and wild type littermates were subjected to intranasal infection with clinically-relevant respiratory viruses: rhinovirus (RV1B) and influenza A. We found that Pellino-1 is expressed in the airways of normal subjects and those with COPD, and that Pellino-1 regulates TLR3 signaling and responses to airways viruses. In particular we observed that knockout of Pellino-1 in the murine lung resulted in increased production of proinflammatory cytokines IL-6 and TNFα upon viral infection, accompanied by enhanced recruitment of immune cells to the airways, without any change in viral replication. Pellino-1 therefore regulates inflammatory airway responses without altering replication of respiratory viruses.</p

    Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels

    Get PDF
    The soluble cleaved urokinase plasminogen activator receptor (scuPAR) is a circulating protein detected in multiple diseases, including various cancers, cardiovascular disease, and kidney disease, where elevated levels of scuPAR have been associated with worsening prognosis and increased disease aggressiveness. We aimed to identify novel genetic and biomolecular mechanisms regulating scuPAR levels. Elevated serum scuPAR levels were identified in asthma (n=514) and chronic obstructive pulmonary disease (COPD; n=219) cohorts when compared to controls (n=96). In these cohorts, a genome-wide association study of serum scuPAR levels identified a human plasma kallikrein gene (KLKB1) promoter polymorphism (rs4253238) associated with serum scuPAR levels in a control/asthma population (P=1.17×10−7), which was also observed in a COPD population (combined P=5.04×10−12). Using a fluorescent assay, we demonstrated that serum KLKB1 enzymatic activity was driven by rs4253238 and is inverse to scuPAR levels. Biochemical analysis identified that KLKB1 cleaves scuPAR and negates scuPAR's effects on primary human bronchial epithelial cells (HBECs) in vitro. Chymotrypsin was used as a proproteolytic control, while basal HBECs were used as a control to define scuPAR-driven effects. In summary, we reveal a novel post-translational regulatory mechanism for scuPAR using a hypothesis-free approach with implications for multiple human diseases

    Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye

    Get PDF
    Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Mu ̈ ller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss

    Hyperfine Spectroscopy of Isotopically Engineered Group-IV Color Centers in Diamond

    Full text link
    A quantum register coupled to a spin-photon interface is a key component in quantum communication and information processing. Group-IV color centers in diamond (SiV, GeV, and SnV) are promising candidates for this application, comprising an electronic spin with optical transitions coupled to a nuclear spin as the quantum register. However, the creation of a quantum register for these color centers with deterministic and strong coupling to the spin-photon interface remains challenging. Here, we make first-principles predictions of the hyperfine parameters of the group-IV color centers, which we verify experimentally with a comprehensive comparison between the spectra of spin active and spin neutral intrinsic dopant nuclei in single GeV and SnV emitters. In line with the theoretical predictions, detailed spectroscopy on large sample sizes reveals that hyperfine coupling causes a splitting of the optical transition of SnV an order of magnitude larger than the optical linewidth and provides a magnetic-field insensitive transition. This strong coupling provides access to a new regime for quantum registers in diamond color centers, opening avenues for novel spin-photon entanglement and quantum sensing schemes for these well-studied emitters
    corecore